Самые странные галактики во вселенной

Бетельгейзе

Одна из самых загадочных звезд в космическом пространстве, Бетельгейзе расположилась в созвездии Ориона. Из-за этого её ещё называют Ориона.

Красный сверхгигант имеет более 8 названий на разных языках мира, но сегодня мир принял общепринятый перевод с арабского языка Яд аль-Джауза — «Рука близнеца».

Яркая звезда неохотно делится с астрономами своими тайнами. Один из удивительных процессов, происходящих с ней, это уменьшение диаметра звезды. За время наблюдений за Бетельгейзе она «похудела» на 15%, уменьшившись с 5,5 до 4,5 астрономических единиц. Её размер сейчас примерно в 1 000 раз превышает размер Солнца.

Ученые прогнозируют, что в будущем эту звезду ждет взрыв, а возможно, сбросив планетарную туманность Ориона, станет белым карликом. Если такой взрыв случится в ближайшее время, то most-beauty обещает вам очень красивое зрелище, ведь Бетельгейзе будет видно и при свете дня. О том когда звезда взорвётся учёные не могут дать никакой информации, но случиться это может в любую секунду.

2

Какова реальная структура Вселенной?

Долгое время научные представления человечества о космосе строились вокруг планет Солнечной системы, звезд и черных дыр, населяющих наш звездный дом – галактику Млечный путь. Любой другой галактический объект, обнаруживаемый в космосе с помощью телескопов, автоматически вносился в структуру нашего галактического пространства. Соответственно отсутствовали представления о том, что Млечный Путь – не единственное вселенское образование.

Эдвин Хаббл

Ограниченные технические возможности не позволяли заглянуть дальше, за пределы Млечного Пути, где по устоявшемуся мнению начинается пустота. Только в 1920 году американский астрофизик Эдвин Хаббл сумел найти доказательства того, что Вселенная значительно больше и наряду с нашей галактикой в этом огромном и бескрайнем мире существуют другие, большие и маленькие галактики. Реальной границы Вселенной не существует. Одни объекты расположены к нам достаточно близко, всего несколько миллионов световых лет от Земли. Другие наоборот, расположены в дальнем углу Вселенной, пребывая вне зоны видимости.

Прошло почти сто лет и количество галактик сегодня уже оценивается в сотни тысяч. На этом фоне наш Млечный путь выглядит совсем не таким огромным, если не сказать, совсем крохотным. Сегодня уже обнаружены галактики, размеры которых трудно поддаются даже математическому анализу. К примеру, самая большая галактика во Вселенной IC 1101 имеет диаметр 6 миллионов световых лет и состоит из более 100 триллионов звезд. Этот галактический монстр находится на расстоянии более миллиарда световых лет от нашей планеты.

Сравнение размеров

Структура такого огромного образования, каковым является Вселенная в глобальном масштабе, представлена пустотой и межзвездными образованиям – волокнами. Последние в свою очередь делятся на сверхскопления, межгалактические скопления и галактические группы. Самым малым звеном этого огромного механизма является галактика, представленная многочисленными звездными скоплениями – рукавами и газовыми туманностями. Предполагается, что Вселенная постоянно расширяется, заставляя тем самым двигаться галактики с огромной скоростью по направлению от центра Вселенной к периферии.

Структура Вселенной

Темная материя – она же пустота, сверхскопления, скопления галактик и туманности – это все последствия Большого взрыва, который положил начало образованию Вселенной. В течение миллиарда лет происходит трансформация ее структуры, меняется форма галактик, так как одни звезды исчезают, поглощенные черными дырами, а другие наоборот, трансформируются в сверхновые, становясь новыми галактическими объектами. Миллиарды лет назад в расположение галактик было совсем другое, чем мы наблюдаем сейчас. Так или иначе, на фоне постоянных астрофизических процессов, происходящих в космосе, можно сделать определенные выводы о том, что наша Вселенная имеет не постоянную структуру. Все космические объекты находятся в постоянном движении, меняя свое положение, размеры и возраст.

Телескоп Хаббл

На сегодняшний день благодаря телескопу Хаббл удалось обнаружить месторасположение наиболее близких к нам галактик, установить их размеры и определить местоположение относительного нашего мира. Стараниями астрономов, математиков и астрофизиков составлена карта Вселенной. Выявлены одиночные галактики, однако в большинстве своем, такие крупные вселенские объекты группируются по несколько десятков в группе. Средний размер галактик в такой группе составляет 1-3 млн. световых лет. Группа, к которой относится наш Млечный Путь, насчитывает 40 галактик. Помимо групп в межгалактическом пространстве имеется огромное количество карликовых галактик. Как правило, такие образования являются спутниками более крупных галактик, как наш Млечный путь, Треугольник или Андромеда.

Состав Вселенной

За группами галактик идут скопления, области космического пространства в которых существует до сотни галактик различных видов, форм и размеров. Скопления имеют колоссальные размеры. Как правило, диаметр такого вселенского образования составляет несколько мегапарсек.

Теория большого взрыва

Самые крупные образования во Вселенной – галактические сверхскопления, которые объединяют группы галактик. Самое известное сверхскопление – Великая Стена Клоуна, объект вселенского масштаба, растянувшийся в длину на 500 млн. световых лет. Толщина этого сверхскопления составляет 15 млн. световых лет.

Что представляет собой галактика М31

Вы наверняка видели фотографии этой замечательной и очень внушительной галактики. Так как она очень большая, да к тому же и расположена ближе других, то и выглядит весьма впечатляюще. Но видим мы её под углом всего в 15, поэтому она кажется овальной. На самом деле это огромная спиральная галактика, как и Млечный Путь. У них много сходства, хотя много и различий.

Галактика Туманность Андромеды содержит триллион звёзд, это в несколько раз больше, чем содержит Млечный Путь. Да и в поперечнике она больше в 2.6 раз – от края до края лучу света пролетает за 260 тысяч лет. Это колоссальное образование приближается к нам со скоростью около 300 км/с, и через 5 миллиардов лет наши галактики пересекутся.

Строение галактики Андромеды типично для спиральных галактик, к которым принадлежит и наша.

Ядро галактики Андромеды

В центре расположено ядро, в центре которого имеется сверхмассивная чёрная дыра – масса её не менее 140 миллионов солнечных. На расстоянии всего 1 световой год от черной дыры, подобно планетам, кружат молодые голубые звёзды возрастом всего в 200 миллионов лет, происхождение которых пока не объяснено.

Ядро галактики Андромеды.

Дело в том, что так близко от черной дыры просто невозможно образование газовых туманностей, из которых могли бы образоваться звезды. Черная дыра такой невероятной массы просто не даст водороду собраться, а тем более сжаться до протозвезды. Однако этот диск из 400 молодых звёзд существует. Ближе к центру диска расположены старые красные звёзды. Они летят по своим орбитам с огромной скоростью — 1000 км/с.

Ядро М31 более крупным планом.

На расстоянии в 5 световых лет от центра, за диском из молодых звёзд, расположено кольцо старых, красных. Так что в таком небольшом объёме сосредоточено, помимо сверхмассивной чёрной дыры, несколько сотен звёзд. А ведь там есть еще и их остатки – нейтронные звёзды и кандидаты в черные дыры.

Так что ядро галактики Андромеды – довольно густонаселенное всякими объектами место, притом весьма негостеприимное и опасное.

Достопримечательности М31

Кроме ядра, Туманность Андромеды богата и другими интересными объектами. Например, в неё открыты звёздные скопления нового типа. Они напоминают шаровые скопления, но очень большие – их диаметр составляет сотни световых лет. А входят в него многие сотни тысяч звёзд, и при этом расположены они не так тесно, как более компактные шаровые скопления. Ученые склонны относить такие объекты к карликовым сфероидальным галактикам.

Представляете? Внутри гигантской галактики есть собственные карликовые галактики. Хотя все они тоже неимоверно огромны по нашим меркам, и представить их реальные размеры очень сложно.

В М31 находится самое яркое шаровое скопление среди всех галактик Местной группы. Называется оно Mayall II, и удалено на 130 000 световых лет от центра галактики. В это скопление входит минимум 300 000 старых звёзд, а в центре его имеется чёрная дыра, с массой в 20 000 солнечных. Учёные считают, что это шаровое скопление – ядро одной из поглощенных в прошлом карликовых галактик. Теперь это просто часть гигантского мегаполиса.

В этой галактике много чёрных дыр – сейчас известно 35 штук. Шаровых скоплений в ней насчитывается около 450, а в нашей галактике их вдвое меньше. Возможно, там их гораздо больше, однако дальний край неудобен для изучения.

Галактики –спутники

Наш Млечный Путь имеет карликовые галактики-спутники – это Большое и Малое Магеллановы облака. Галактика Андромеды тоже имеет несколько таких спутников – самые яркие и крупные из них имеют обозначения М32 и М110, и их хорошо видно на фотографиях. На самом деле их немало, но они довольно мелкие.

Основные галактики-спутники галактики Андромеды.

Происхождение М32 пока неясно. Учёные считают, что когда-то это была крупная спиральная галактика, которая 2 миллиарда лет назад была практически поглощена галактикой Андромеды. То бесформенное образование, которое мы видим сейчас – это остатки галактики, исковерканные мощной гравитацией триллионного острова. Звёзды её были разбросаны на огромных пространствах и теперь образуют гало М31 – её периферию.

М110, вероятно, постигла та же судьба. Между этой галактикой и Туманностью Андромеды расположено много звёзд, которые имеются и в составе М110. Они богаты тяжелыми металлами и все время перемещаются между галактиками.

Наблюдения галактики Андромеды с древности до наши дней

Ещё арабский астроном Ас-Суфи, живший в X в. н. э., описывает “маленькое небесное облачко”, легко различимое в темные ночи вблизи звезды n созвездия Андромеды.

В Европе на него обратили внимание только в начале XVII в. Современник Галилея и его соратник в первых телескопических наблюдениях неба астроном Симон Мариус в декабре 1612 г

впервые направил телескоп на эту странную небесную туманность. “Яркость ее, – пишет Мариус, – возрастает по мере приближения к середине. Она походит на зажженную свечу, если на нее смотреть сквозь прозрачную роговую пластинку“.

Несколько десятилетий спустя туманность Андромеды изучал Эдмунд Галлей, друг и ученик великого Ньютона. По его мнению, небольшие туманные пятна “не что иное, как свет, приходящий из неизмеримого пространства, находящегося в странах эфира и наполненного средою разлитой и самосветящейся”. Другие религиозно настроенные астрономы, как, например, Дерхем, уверяли, что в этом месте “небесная хрустальная твердь” несколько тоньше обычного и поэтому отсюда на грешную землю изливается “неизреченный свет” царствия небесного.

Галактика Андромеды, или Туманность Андромеды (M31). Яркое пятно в верхней части снимка – «спутник» Андромеды: M110, а яркая точка чуть ниже диска M31 – ещё один спутник: M32

Вопрос об истинной природе туманности Андромеды не был решен и в XIX в. Никто, конечно, уже не говорил о просвечивании “тверди небесной”, но зато шли оживленные споры о том, состоит ли туманность из светящихся газов или из звезд, находится ли она за пределами нашей звездной системы, или из этой туманности в космических окрестностях Солнца рождается новая планетарная система.

Как и всегда в подобных случаях, спор был решен лишь тогда, когда появились новые достаточно мощные средства исследования.

В 1924 г. Эдвин Хаббл, известный американский астроном, на фотоснимках, полученных с помощью 2,5-метрового рефлектора обсерватории Маунт Уилсон, впервые “разрешил” (то есть разделил) туманность Андромеды на отдельные звезды. Впервые глазам исследователя предстала величественная звездная система с миллиардами солнц, возможно, с миллионами обитаемых планет, короче говоря, соседняя галактика.

Разделение туманности Андромеды на отдельные звезды решило вопрос и об удаленности от Земли. Что нельзя было сделать для туманности в целом, то оказалось сравнительно легким делом для отдельных составляющих ее звезд. Используя физические свойства некоторых из них, удалось уверенно показать, что туманность Андромеды находится не внутри нашей Галактики, а далеко за ее пределами, на расстоянии (по современным данным) 520 кпк, т.е. примерно 2,5 миллиона световых лет. Так было положено начало внегалактической астрономии – одной из наиболее бурно развивающихся ныне отраслей науки о небе.

Планета — кусок льда

Помните Gliese 581? Это «адище», которое мы посетили ранее? У нее есть младший брат — Gliese 436 b, которая представляет собой жгучий куб льда. Температура там тоже не для отпуска — 439 градусов Цельсия. Почему же она не тает? На планете огромное количество воды, просто невероятное. Гравитация стягивает все это в направлении ядра, настолько плотно сжимая молекулы воды, что они не могут испариться. Это вам не чайник до 100 градусов вскипятить.

Да это просто кусок льда!

Испаряются только внешние слои воды, поэтому планета постоянно окутана паром, но все остальные слои остаются в твердом состоянии. Условия там по-настоящему адские, кислорода никакого и в помине нет — такая влажность вместе с высокой температурой убивают все живое, что в теории могло бы там возникнуть. Но давайте лучше колонизируем планеты потеплее?

Интересное дополнение

Как показано выше, масса всего вещества в Галактике, внутри орбиты Солнца радиусом примерно 25 000 световых лет, равна 10^11 масс Солнца. Отсюда масса всего вещества в видимой (светящейся) части нашей галактики, радиус которой примерно 50 000 световых лет, будет (при соблюдении условия M/R = const) равна 2*10^11 масс Солнца.

​Это в 5 раз меньше полной массы Галактики, которая, как показано выше, может достигать величины в 10^12 масс Солнца. Таким образом, большая часть массы Галактики может находиться в ее гало радиусом порядка 10^6 световых лет.

Как показано выше, эта масса около 8*10^11 масс Солнца может обеспечиваться как массой газа и пыли, которые находятся в ее гало, так и массой гравитосферы Галактики. Допустим, что основной вклад в эту массу (8*10^11 масс Солнца) дает гравитосфера Галактики.

Гравитосфера массивного тела является слоистой средой с градиентом плотности. Плотность гравитосферы массивного тела пропорциональна ускорению свободного падения в данной точке гравитосферы: g = G*M/R^2. Плотность гравитосферы массивного тела прямо пропорциональна массе тела и обратно пропорциональна квадрату расстояния от данной точки до центра масс тела.

Таким образом, плотность гравитосферы Галактики при удалении от ее центра будет падать пропорционально R^2, а объем гравитосферы будет расти пропорционально R^3. Это значит, что при удалении от центра Галактики масса ее гравитосферы будет расти пропорционально R, и условие постоянства скорости движения звезд в галактике (M/R = const) будет точно выполняться.

Таким образом, наблюдаемое постоянство скорости движения звезд в галактиках может просто и естественно объясняться наличием у галактик гравитосфер, как у всех массивных объектов Вселенной.

Гравитосферы галактик могут являться той самой «темной материей», которую ввели в физику как раз для объяснения наблюдаемого постоянства скорости движения звезд в галактиках, и свойства и физическая природа которой до сих пор так и не определены. 

Как сказано выше, имеется большое количество данных, в том числе и данные астрономических наблюдений, которые указывают на то, что галактика Млечный путь может иметь массу в 10^12 масс Солнца и радиус в 1 миллион световых лет, что значительно больше видимой (светящейся) части Галактики, имеющей размер примерно в 100 000 световых лет. В результате действия трех основных физических процессов, происходящих во Вселенной (конденсация, конвертация и генерация вещества), в гало Галактики будут формироваться обширные газовые облака, которые будут двигаться к центру Галактики под действием сил притяжения (гравитации), создавая потоки газа и пыли.

Таким образом, вне видимой (светящейся) части галактики, в ее гало, кроме газо-пылевых облаков, может находится огромное количество «темных» массивных объектов. Это могут быть темные звезды типа коричневых карликов, а также протозвезды и протопланеты, которые образуются по мере уплотнения газо-пылевых потоков вещества при их движении из глубин галактики к ее ядру.

Так, например, в статье: «100 миллиардов коричневых карликов могут находиться в пределах Млечного пути» говорится о новом исследовании, которое показало, что в нашей Галактике, вероятно, находится огромное количество коричневых карликов, которое можно оценить примерно в 100 миллиардов.

Коричневые карлики, из-за недостатка массы, неспособны генерировать большое количество энергии внутри себя, поэтому они относительно холодные и плохо светятся. Обнаружить такие звезды обычными методами достаточно сложно. Причем, эти 100 миллиардов коричневых карликов, это можно сказать «видимая часть огромного айсберга», а невидимая часть этого «айсберга» состоит из много большего количества менее крупных, а значит более холодных тел.

Источники

  • https://nikolay-mikhailov.weebly.com/1052108310771095108510991081-1087109110901100.htmlhttp://edufuture.biz/index.php?title=Строение_нашей_галактикиhttp://o-kosmose.net/galaktiki-vselennoi/mlechnyiy-put/razmeryi/https://ru.wikipedia.org/wiki/Галактикаhttps://naked-science.ru/article/sci/28-06-2013-133

Самые дальние протокластеры

5 самых дальних протокластеров
Протокластер галактики Расстояние Заметки
Записей пока нет
  • Мли представляет собой расстояние в миллионы световых лет .
  • представляет собой миллионы парсеков , меру расстояния.
  • z представляет красное смещение , меру скорости разбегания и предполагаемое расстояние из-за космологического расширения.
  • Расстояния отсчитываются от Земли, при этом Земля находится на нуле.
Самый удаленный обладатель титула протокластера
Протокластер галактики Дата Красное смещение (z) Заметки
БОРГ-58 2012 г. ~ 8
COSMOS-AzTEC3 2011– 5,3 Скопление, расположенное в Секстане , по-видимому, состоит из 11 маленьких маленьких галактик.
Протокластер вокруг радиогалактики TN J1338-1942 2002– 4.11 Он был описан как самый дальний кластер.
Протокластер около 3C 368 1982– 1.13
  • z представляет красное смещение , меру скорости разбегания и предполагаемое расстояние из-за космологического расширения.
  • Расстояния отсчитываются от Земли, при этом Земля находится на нуле.

В 2002 году очень большое и очень богатое протокластер, или самое далекое протосверхскопление, было обнаружено в области скопления галактик MS 1512 + 36 , вокруг гравитационно линзированной галактики MS 1512-cB58 , на z = 2.724.

Звездная эволюция

Основываясь на массе звезды, можно определить весь ее эволюционный путь, так как он проходит по определенным шаблонным этапам. Есть звезды промежуточной массы (как Солнце) в 1.5-8 раз больше солнечной массы, более 8, а также до половины солнечной массы. Интересно, что чем больше масса звезды, тем короче ее жизненный срок. Если она достигает меньше десятой части солнечной, то такие объекты попадают в категорию коричневых карликов (не могут зажечь ядерный синтез).

Объект с промежуточной массой начинает существование с облака, размером в 100000 световых лет. Для сворачивания в протозвезду температура должна быть 3725°C. С момента начала водородного слияния может образоваться Т Тельца – переменная с колебаниями в яркости. Последующий процесс разрушения займет 10 миллионов лет. Дальше ее расширение уравновесится сжатием силы тяжести, и она предстанет в виде звезды главной последовательности, получающей энергию от водородного синтеза в ядре. Нижний рисунок демонстрирует все этапы и трансформации в процессе эволюции звезд.

Этапы эволюции звезды

Когда весь водород переплавится в гелий, гравитация сокрушит материю в ядро, из-за чего запустится стремительный процесс нагрева. Внешние слои расширяются и охлаждаются, а звезда становится красным гигантом. Далее начинает сплавляться гелий. Когда и он иссякает, ядро сокращается и становится горячее, расширяя оболочку. При максимальной температуре внешние слои сдуваются, оставляя белый карлик (углерод и кислород), температура которого достигает 100000 °C. Топлива больше нет, поэтому происходит постепенно охлаждение. Через миллиарды лет они завершают жизнь в виде черных карликов.

Процессы формирования и смерти у звезды с высокой массой происходят невероятно быстро. Нужно всего 10000-100000 лет, чтобы она перешла от протозвезды. В период главной последовательности это горячие и голубые объекты (от 1000 до миллиона раз ярче Солнца и в 10 раз шире). Далее мы видим красного сверхгиганта, начинающего сплавлять углерод в более тяжелые элементы (10000 лет). В итоге формируется железное ядро с шириною в 6000 км, чье ядерное излучение больше не может противостоять силе притяжения.

Когда масса звезды приближается к отметке в 1.4 солнечных, электронное давление больше не может удерживать ядро от крушения. Из-за этого формируется сверхновая. При разрушении температура поднимается до 10 миллиардов °C, разбивая железо на нейтроны и нейтрино.  Всего за секунду ядро сжимается до ширины в 10 км, а затем взрывается в сверхновой типа II.

Туманность Эскимоса — один из последних этапов эволюции небольшой звезды

Если оставшееся ядро достигало меньше 3-х солнечных масс, то превращается в нейтронную звезду (практически из одних нейтронов). Если она вращается и излучает радиоимпульсы, то это пульсар. Если ядро больше 3-х солнечных масс, то ничто не удержит ее от разрушения и трансформации в черную дыру.

Звезда с малой массой тратит топливные запасы так медленно, то станет звездой главной последовательности только через 100 миллиардов – 1 триллион лет. Но возраст Вселенной достигает 13.7 миллиардов лет, а значит такие звезды еще не умирали. Ученые выяснили, что этим красным карликам не суждено слиться ни с чем, кроме водорода, а значит, они никогда не перерастут в красных гигантов. В итоге, их судьба – охлаждение и трансформация в черные карлики.

Особенности расположения

Узнать изучаемый космический объект в ночном небе не составит особого труда. Его отличает особенный внешний вид, представленный широкой вытянутой линией белого цвета, которая визуально напоминает след от молока. Обзор данной группы может быть осуществлён с того момента, как планета сформировалась, ведь этот участок выступает в качестве галактического центра.

Галактика Млечный путь имеет диаметральное сечение, составляющее 100 000 световых лет. Если бы имелась возможность созерцать её сверху, можно было бы заметить выпуклость в центральной области. Оттуда отходят 4 рукава. Таким типом представлено свыше 2/3 галактик во всей Вселенной. В сравнении с классической спиралью элементы, оснащённые перемычкой, содержат в себе стержень, в центре которого – два ответвления. Это рукава. Именно в рукаве Ориона располагается наша система.

Галактика Млечный путь не является статичной и имеет свойство вращения в космическом пространстве. В процессе этого явления она переносит все объекты вокруг галактического центра с собой. Происходит это на скорости, равной 828 000 км/ч. Ввиду внушительных размеров рассматриваемой системы на совершение одного прохода у неё уходил 230 миллионов лет времени. Спиральные рукава накапливают в себе немало пылевых и газовых частиц, что способствует формированию оптимальных условий для образования новых звёзд.

Характеристики галактики Млечный Путь

В самом центре может быть замечена выпуклость, имеющая внутри пыль, звёздные объекты и газ. Именно по этой причине рядовому наблюдателю доступен незначительный процесс от общего количества светил. Дело именно в густой дымке, препятствующей хорошему обзору.

По кругу располагается ореол, включающий в состав горячий газ и старые шаровые скопления, звезды. Его продолжительность составляет сотни тысяч световых лет. Однако вместить он способен лишь 2% светил от тех объектов, которые находятся в рамках диска. Стоит также помнить о тёмной материи, на которую приходится 90% массы галактики.

Виды и классификация

Галактика не имеет чётких границ, поэтому точно понять, где они заканчиваются, и начинается межгалактическое пространство невозможно. В самой космической системе имеются планеты, туманности, звёзды, звёздные скопления. Но они есть и вокруг систем. Учёные различают следующие формы космических систем:

  1. Эллиптическая.
    Эллиптический звёздный остров относятся к первому классу. Его особенностью является отсутствие рукавов, диска, центрального ядра. По большому счёту он является балджем огромного размера, состоящим из галактической сферы неправильной (вытянутой) или идеально круглой, шарообразной формы. Звёздный состав эллиптических систем включает старых красных гигантов или красных, жёлтых карликов. Массивных, активных светил в них нет или они крайне редки. В список галактик эллипсоидной формы входит М87, расположенная на расстоянии в 53,5 млн световых лет от Земли.
  2. Линзовидная.
    Является промежуточным звеном между спиральными и эллиптическими звёздными островами. У астрономов существует версия, что линзовидная галактика образовалась из спиральной, у которой слились рукава, а потенциал звездообразования закончился. У неё имеется массивное ядро, распластанные газовый и звёздный диски. Внешне напоминает двояковыпуклую линзу из-за контраста плоских дисков и объёмного, выступающего балджа. Состоит из старых звёзд, чёрных дыр, маленьких зрелых светил остатков сверхновых звёзд, галактической пыли. Одна из подобных космических систем под названием Веретено располагается от Земли на расстоянии в 45 млн световых лет.
  3. С перемычкой.
    Система округлой формы, которую посередине пересекает яркая перемычка, состоящая из звёзд и межзвёздного газа. Рукава идут от краёв этой перемычки (бара). Галактика с перемычкой очень схожа со спиральной. Основное их отличие в том, что спирали начинаются от бара, а не от ядра. Примером является NGC 1300, расположенная в 60 млн световых лет от нашей планеты.
  4. Спиральная.
    В классическом варианте спиральная галактика – это активно вращающийся звёздный остров в виде эллипса, в котором от балджа отходят рукава в виде закрученных спиралей. У большинства таких космических объектов есть перемычки. В рукавах активно образуются молодые звёзды из-за большого содержания там свободной видимой материи. Список галактик в виде спирали обширен. Такие системы составляют 55% от всего количества звёздных островов во Вселенной.
    Интересным фактом является то, что у них немного рукавов. Спираль закручивается не очень туго, звёзды свободно перемещаются из одной её части в другую. Почему рукава не закручиваются больше ещё не известно. Одной из версий является то, что спираль закручивается под влиянием волн плотности, сжимающие пылевые и газовые облака, попадающие в галактические рукава. В результате активируется образование звёзд, в основном массивных и ярких, жизненный срок которых составляет несколько миллионов лет. При этом они находятся практически всегда в фиксированном положении, что обеспечивает стабильность спиралей.
    Но эта гипотеза так и остаётся предположением без доказательств, потому что длительное изучение развития галактических систем невозможно из-за их сложной структуры. Самая известная галактика, относящаяся к этому типу – Млечный Путь.
  5. Неправильная.
    Очень редкая разновидность звёздных островков. Состоит из газа, пыли, звёздных скоплений, но в них отсутствуют основные структурные элементы, такие как балдж, рукава. По структуре и внешнему виду неправильная галактика похожа на рваные облака. Такой формой она часто обязана воздействию гравитационных полей. Но иногда приобретает рваный вид сама по себе.
    Интересными, с точки зрения, астрономии является карликовая неправильная галактика. Она наполнена газом – необходимым элементом для образования новых звёзд. В ней мало металлов и они очень компактные по размеру. Всё это в совокупности создаёт оптимальные условия для зарождения ярких, огромных звёзд, которые очень быстро гаснут. К неправильной системе относится NGC 4449, располагающаяся 12 млн световых лет от Земли.

Бар (перемычка) проходит от внутренних концов спиральных ветвей (голубые) к центру галактики. NGC 1300.

Планета Земля входит в Млечный Путь, это спиральная галактика с перемычкой. Включает более 150 млрд звёзд, световой луч с одной стороны Млечного Пути до другого проходит за сотню тысяч лет. Солнечная система располагается на краю нашей галактики. Расстояние от Солнца до ядра Млечного Пути составляет 30 000 световых лет.

Бескрайние просторы Вселенной

Необъятные космические просторы, в которых собраны триллионы галактик,
множество звездных систем, черные дыры, пустота, темная матери и т.п. — это и
есть Вселенная.
Вероятно, она таит в себе еще много других явлений и объектов, неизвестных нам.
Предвидеть новые открытия — сложно, ведь она живет “своей жизнью”, находится в
непрерывном движении.

Ученые полагают, что Вселенная образовалась в результате Большого взрыва. Ее возраст составляет 14 млрд лет. А ее границы… отсутствуют! Изучить ее целиком — невозможно, ведь изменения ее размеров происходят ежесекундно. Многие явления и объекты, которые находятся на ее просторах, до сих пор еще не изучены. Хотя нам, наблюдателям с Земли, кажется, что там все происходит закономерно и точно. Вполне вероятно, что где-то в просторах космоса, может существовать мир, идентичный нашему.

Обозначения ярких звезд в созвездиях

Астрономы давно поняли, что при детальном изучении звездного неба одними лишь именами обойтись не удастся — звезд слишком много!

Система Байера

В 1603 году немецкий астроном Иоганн Байер издал звездный атлас «Уранометрия», в котором впервые звезды обозначались буквами греческого алфавита в порядке убывания блеска. Самая яркая звезда в созвездии обозначалась буквой α (альфа), вторая по яркости — β (бета), третья — γ (гамма) и так далее, вплоть до омеги. Если в созвездии было много звезд и 24 букв алфавита не хватало, Байер использовал латинский алфавит: сначала строчные буквы, а затем и заглавные (последние только до буквы Q).

В атласе Байера ярчайшая звезда ночного неба, Сириус, стала обозначаться как α Большого Пса, а звезда Арктур как α Волопаса.

Эта система прижилась в астрономии и широко используется по сей день. Правда, принцип убывания яркости не всегда соблюдается. Например, звезды ковша Большой Медведицы обозначены не по яркости, а просто справа налево: крайняя звезда ковша — α Большая Медведицы, а крайняя звезда ручки ковша — η Большой Медведицы. Бывает и так, что самая яркая звезда в созвездии не альфа, а бета или гамма. Нередко это связано с тем, что во времена Байера яркость звезд определялась очень неточно, на глаз.

Как обозначаются звезды в созвездиях: Система Флемстида

В XVII веке английский астроном Флемстид предложил обозначать звезды в созвездиях просто цифрами. При этом порядок присвоения цифр звездам созвездия зависел не от их яркости, а от порядка пересечения ими небесного меридиана. (То есть в конечном счете от координат звезды.)

В этой системе Сириус стал обозначаться как 9 Большого Пса. Это значит, что Сириус — девятая по очередности звезда из созвездия Большого Пса, которая пересечет небесный меридиан на юге.

Сегодня на картах звездного неба самые яркие звезды в созвездиях обозначены греческими буквами по системе Байера, а более тусклые обозначены цифрами по системе Флемстида. Латинские буквы Байера для обозначения звезд используются редко, зато на карты часто наносят имена самых ярких звезд.

Планета с тремя Солнцами

На расстоянии около 22 световых лет от нашего Солнца размещена планета под названием LTT1445Ab. Вокруг нее расположены сразу три звезды, которые представляют собой своего рода копии Солнца. Планета примерно в 1,35 раза больше Земли и в 8 раз ее массивнее и получает при этом в 5 раз больше солнечного излучения от своих звезд.

Не планета, а настоящий солярий

Поскольку эта экзопланета расположена не так далеко (некоторые планеты находятся в сотнях световых лет от Солнца), это дает астрономам уникальную возможность тщательно изучить состав ее атмосферы. Сейчас исследователи пытаются найти в ней признаки содержания кислорода и водяных паров, которые могут указывать на возможное наличие жизни. Но не стоит надеяться найти на экзопланете какие-либо следы потенциальных организмов: крайне высокие температуры и высокий уровень радиации делают это место абсолютно непригодным для возникновения жизни. Все-таки освещение сразу тремя «Солнцами» не прошло бесследно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector