Атомная энергетика россии

Сколько стоит новое топливо

Производственники — консерваторы. И их консерватизм оправдан. Философия производственника понятна: у меня отлаженное производство, я работаю, отвечаю за план, за производство, за людей, которые работают. Всякое новшество приносит мне риски. Риски нового, которое надо испытывать, а при этом всегда возможны какие-то неполадки, накладки и так далее. Оно мне надо? Я буду лучше спокойно жить. Поэтому конфликт таких интересов: развития, продвижения нового и точки зрения производственника-консерватора, он всегда был, есть и будет. Другое дело, что надо это разумно преодолевать.

Сегодня существуют разновидности уранового топлива: нитридное, керамическое, топливо с добавкой редких земель. Очень большое количество вариантов. И разве это производится без всяких затрат, без всяких денег? Совершенно не так. Чтобы получить новое топливо, в основе которого будет торий, надо наработать технологию изготовления этих материалов. И прежде чем говорить, что ториевая энергетика намного дороже урановой, надо сделать простую вещь — сравнительный экономический анализ. Например, если в качестве топлива для реактора будет использоваться расплав фторида тория, то получить фториды тория, как мне кажется, не так уж и дорого. Если мы будем получать топливо в виде шаровых элементов — это второй вариант, керамика — третий вариант. Тем более речь здесь идет, прежде всего, о сырье, о монаците, и вопрос цены будет определяться с учетом комплексного использования. То есть выделение из монацита всей суммы редких земель, урана и циркония — все это серьезным образом снизит затраты на производство топлива на основе тория.

Дизайн первого в мире ториевого ядерного реактора, разработанного в Центре исследования ядерной энергетики Бхаба в Мумбаи (Индия) и предназначенного для использования ториевых топливных ячеек для коммерческой выработки энергии.

Немного о реакторах на быстрых нейтронах

Неважно, по какой технологии, на каком реакторе, в каком конструкторском исполнении использовать быстрые нейтроны, зажигать природный материал — в том или ином количестве все равно будут образовываться отходы. И отходы надо перерабатывать

Если говорить о чистоте методологии и понятий, как такового замкнутого цикла нет и не может быть. Но в варианте ториевой энергетики будет меньше активных отходов, которые надо перерабатывать.

Я убежден, что мы в любом случае перейдем постепенно на ториевую энергетику, тем более что последние исследования и расчеты физиков Томского политехнического университета, теоретический расчет активной зоны, показывают, что возможен эволюционный переход на ториевую энергетику применительно и к легководным реакторным установкам. То есть не сразу революция, а постепенный перевод активной зоны существующих легководных реакторов с частичной заменой активной зоны с уранового топлива на ториевое.

Центр исследования ядерной энергетики Бхаба (Индия).

Прежде чем вешать штампы, что это — плохо, а это — хорошо, надо серьезно заняться реальным делом. Допустим, изготовить парочку твэлов и на опытных стендах это все погонять. Снять все ядерно-физические характеристики. Много исследований нужно провести, причем долговременных. И чем дальше мы оттягиваем, отговариваясь, что это сложно и тяжело, тем больше мы будем отставать в развитии. Нужно все делать вовремя. В свое время в Средмаше этим занимались, получали металлический торий на наших предприятиях, и эти технологии были. Надо поднять старый опыт, старые отчеты, они все, наверное, в архивах сохранились, и специалисты это найдут. С учетом того, что было сделано, и новых возможностей необходимо все это дело продолжить.

Международное сотрудничество — ключ к развитию

Считанные дни остаются до энергопуска на белорусской станции нового первого блока в Белоруссии. Еврокомиссия очень активно там присутствует. Мы договорились с белорусскими партнерами, что они будут открыты и пройдут все все стресс-тесты. Конечно, и Госатомнадзор Белоруссии, и правительство от нас требуют, может быть, 110% гарантий по безопасности и качеству работ.

У нас очень хороший диалог с нашими европейскими партнерами, в первую очередь с EDF — атомной семьей Франции. Нам есть чему у них поучиться: во Франции самая большая доля атомной энергетики. Это огромная подпитывающая среда для научных исследований.

Торий для Арктики и не только

Существует огромная потребность в серийных мобильных и стационарных энергетических установках сверхмалой и малой мощности (от 1 до 20 МВт), которые могут быть использованы в качестве источников энергии и тепла при освоении северных территорий, разработке там новых месторождений, а также в обеспечении электроэнергией удаленных воинских гарнизонов и крупных военно-морских баз на Северном и Тихоокеанском флотах. Эти установки должны обладать как можно большим периодом работы без перегрузки ядерного топлива, при их эксплуатации не должен накапливаться плутоний, их должно быть легко обслуживать. Они не могут работать в уран-плутониевом цикле, потому что при его использовании накапливается плутоний. Перспективной альтернативой урану в данном случае является использование тория.

Проблема энергетики в Арктике — это проблема номер один. И этим надо абсолютно четко заниматься. Вот сейчас в Жодино наши уважаемые белорусские друзья сделали самый большой в мире «БелАЗ», грузоподъемность 450 тонн. Для того чтобы этот «БелАЗ» работал нормально, все его колесные пары приводятся отдельно, на каждое колесо стоит отдельный двигатель. Но для того чтобы получить электроэнергию, стоят два огромных дизеля, которые приводят в движение электрогенераторы, они распределяют все на эти электродвигатели. Давайте сделаем маленький ториевый реактор, причем не обязательно его ставить прямо на этот «БелАЗ». Можно сделать разные варианты. Например, очень эффективно будет использовать ториевые реакторы малой мощности для производства водорода. И перевести все двигатели на водородные. В этом плане у нас теоретически получается блестящая картина, потому что при сжигании водорода мы получим воду. Абсолютно «зеленая» энергетика, о которой мечтают все. Или мы сделаем атомные станции на основе реакторов малой мощности. С дальнейшим развитием и освоением Арктики передвижные локальные реакторы, реакторные установки малой мощности дадут, с моей точки зрения, сумасшедший народнохозяйственный эффект. Просто сумасшедший. Они должны быть вот именно передвижными, локальными, мобильными. И я думаю, что не так сложно сделать реакторы малой мощности на тории с периодом перегрузки в десять и более лет в условиях Арктики. Да, можно сделать реакторы малой мощности и на существующих технологиях: возьмем реакторы, которые у нас есть в военно-морском флоте, на подводных лодках, атомоходах. Поставим их. Начнем эксплуатировать. Все это можно сделать. Но сложности в эксплуатации и выводе из эксплуатации, загрузка, выгрузка и вывоз в суровых условиях северных широт сильно усложнят применение такого типа установок.

Еще один показательный пример. В громадных якутских карьерах «Алроса», на горных подразделениях Лебединского ГОКа при добыче железной руды мы используем большегрузные «БелАЗы» или «Катерпиллеры», и существует большая проблема проветривания карьеров от выхлопов и после массовых взрывов для отбойки руды. Что применяется? Вплоть до авиационных вертолетных двигателей, но они еще тоже работают на органическом топливе, на керосине и прочее, в свою очередь происходит вторичное загрязнение карьера. При переходе на транспортные средства с реакторными установками на основе тория отпадает необходимость в проветривании карьеров, не нужны склады ГСМ и т. д.

Для меня шок, когда Россия, правопреемница Советского Союза, не в силах обеспечить свою атомную отрасль природным компонентом, урановым сырьем. Я этого не понимаю, а я воспитан на старой школе и нигде, кроме Средмаша, не работал. Шутка ли, некоторое время назад, судя по официальным источникам Росатома, мы были вынуждены закупать сырье в Австралии.

Российские предприятия, говорят, убыточны, но в таком случае, почему же аналогичные предприятия на Украине, где тоже подземная добыча и содержание металла в руде аналогичное нашему, прибыльны? Наверное, настала потребность, государственная потребность иметь госрезервы стратегических материалов для развития атомной энергетики, а также в целом для промышленности. С учетом вот таких фокусов, которые происходят (санкции и прочее), нас в любой момент могут поставить в очень-очень неудобное, зависимое положение.

Там, где речь идет о принципиальных вещах, о безопасности государства, не только с точки зрения обороноспособности, государственная безопасность — понятие емкое и громадное, и это не только вооружение. Это и продукты питания, и другие стратегические вещи.

Плавучие АЭС — один из перспективных проектов развития Арктики — вполне могли бы оснащаться ториевыми реакторами, небольшими и «долгоиграющими»

Зачем нужен директор?

Я был генеральным директором на трех самых крупных предприятиях Средмаша. Я горжусь этим и знаю, как выстраивались отношения между мной, как директором предприятия, начальником главка и министром. Я принимал решения в тех рамках финансирования и компетенции, которые у меня были. И я за это отвечал. Мы принимали решения, мы проводили испытания. Обосновывали? Да. Но мы это делали. Потом уже на основе всего этого мы обосновывали и доказывали необходимость подобных решений. Нам надо это делать, нам надо это внедрять, это в логику развития отрасли, это нужно, и так далее. Сейчас все ждут, какая будет команда из Москвы, что нам делать?

Любая система взаимоотношений, любая система в отрасли, в народном хозяйстве и где угодно — это есть система доверия. Если ты поставил директора, то а) значит, ты ему доверяешь, б) если ты ему доверяешь, ты даешь ему определенные рамки свободного плавания. Но нельзя директору, командиру, который отвечает за производство, за людей, за технику безопасности, за выполнение плана, миллион всяких функций, постоянно звонить из Москвы и одергивать: «так не делай, сюда не смотри, туда не ходи». Если что-то случится на производстве, отвечать будет директор, а не тот, кто его из Москвы дергает. Сейчас же директор предприятия, извините меня, кусок мыла не может купить. Все идет через Москву, через тендеры. Но если это так, то зачем вам директор нужен? Уберите его и командуйте из Москвы, что надо сделать.

Индонезийское Национальное агентство по атомной энергии (BATAN) планирует строительство экспериментального реактора (RDE) для тестирования с использованием ториевого топлива (фото из открытых источников).

Таблица 14 — Производство, передача и распределение электроэнергии в 2010 г. в расчете на душу населения, млн. руб./чел.

Регион РФ

Численность населения в 2010 г., тыс. чел.

Производство, передача и распределение электроэнергии в 2010 г., млн руб.

Производство, передача и распределение электроэнергии в 2010 г. в расчете на душу населения, млн руб./чел.

Российская Федерация

142 905

2 222 096

15 550,0

Центральный федеральный округ

38 438

696 166

18 129,3

Северо-Западный федеральный округ

13 584

221 978

16 321,9

Южный федеральный округ

13 857

147 304

10 674,2

Северо-Кавказский федеральный округ

9 497

63 254

6 658,3

Приволжский федеральный округ

29 900

402 654

13 466,7

Уральский федеральный округ

12 083

322 629

26 663,5

Сибирский федеральный округ

19 254

260 856

13 586,2

Республика Алтай

206

746

3 621,3

Республика Бурятия

973

8 937

9 184,9

Республика Тыва

308

1 881

6 107,2

Республика Хакасия

532

9 670

18 176,7

Алтайский край

2 419

18 062

7 466,7

Забайкальский край

1 107

8 110

7 326,1

Красноярский край

2 828

47 893

16 935,3

Иркутская область

2 429

52 423

21 582,1

Кемеровская область

2 763

50 881

18 415,1

Новосибирская область

2 666

33 545

12 582,5

Омская область

1 977

15 044

7 609,5

Томская область

1 046

13 666

13 065,0

Дальневосточный федеральный округ

6 292

107 254

17 046,1

Баланс разных источников энергии меняется незначительно

За последние 20 лет объемы чистой энергии увеличились в два раза. Это энергия, полученная из экологически чистых источников — гидроэлектроэнергия, атомная, солнечная, ветровая, геотермальная, приливная, энергия биомассы. Однако ее доля в общем объеме добытой энергии осталось прежней и даже немного сократилась — с 36% в 1999 году до 35% в 2018 году.

Дело в том, что индустрия ископаемого топлива развивается быстрее индустрии чистой энергии. Многие бедные страны все еще используют дрова, навоз и уголь в качестве основного топлива.

Доля альтернативных возобновляемых источников за последние 20 лет росла — с 1% до 9% в 2018 году, а атомные электростанции, наоборот, закрывались — доля этого источника энергии сократилась с 17% до 10% за тот же период.

Солнечная и ветряная энергия нестабильна, ее можно получать только 10—30% времени, когда достаточно светит солнце и дует ветер. А больницам, домам, городам и заводам энергия нужна постоянно. И хотя в последнее время аккумуляторы существенно улучшились, они не так эффективны, как электрическая сеть.

Каждый раз, заряжая и разряжая аккумулятор, мы теряем около 20-40% энергии.

Межправительственный комитет ООН по вопросам климата (IPCC) изучил содержание CO2 во всех видах топлива. Атомная энергетика оказалась одной из самых экологически чистых. При этом атомная электростанция может быть задействована 92% времени.

Таблица 15 — Коэффициент душевого производства электроэнергии по регионам РФ в 2010 г.

Регион РФ

Численность населения в 2010 г., тыс. чел.

Удельный вес населения региона в общей численности населения страны, %

Производство, передача и распределение электроэнергии в 2010 г., млн руб.

Удельный вес производства электроэнергии региона в соответствующей структуре отрасли страны, %

Коэффициент душевого производства электроэнергии по регионам РФ

Российская Федерация

142 905

100

2 222 096

100

Центральный федеральный округ

38 438

26,8

696 166

31,32

1,17

Северо-Западный федеральный округ

13 584

9,5

221 978

9,98

1,05

Южный федеральный округ

13 857

9,6

147 304

6,62

0,69

Северо-Кавказский федеральный округ

9 497

6,6

63 254

2,84

0,43

Приволжский федеральный округ

29 900

20,9

402 654

18,12

0,86

Уральский федеральный округ

12 083

8,4

322 629

14,51

1,73

Сибирский федеральный округ

19 254

13,4

260 856

11,73

0,87

Республика Алтай

206

0,14

746

0,03

0,21

Республика Бурятия

973

0,68

8 937

0,4

0,58

Республика Тыва

308

0,21

1 881

0,08

0,38

Республика Хакасия

532

0,37

9 670

0,43

1,16

Алтайский край

2 419

1,69

18 062

0,81

0,48

Забайкальский край

1 107

0,77

8 110

0,36

0,46

Красноярский край

2 828

1,97

47 893

2,15

1,1

Иркутская область

2 429

1,69

52 423

2,35

1,39

Кемеровская область

2 763

1,93

50 881

2,28

1,18

Новосибирская область

2 666

1,86

33 545

1,5

0,81

Омская область

1 977

1,38

15 044

0,67

0,48

Томская область

1 046

0,73

13 666

0,61

0,83

Дальневосточный федеральный округ

6 292

4,4

107 254

4,82

1,09

Программа создания новой ядерной энергетики включает в себя два основных этапа.

Программа исследований физики взаимодействия нейтронов большой энергии с тяжёлыми ядрами.

В рамках этой программы должны исследоваться следующие ключевые вопросы: генерация и спектры нейтронов при воздействии на мишень, состоящую из тяжёлых ядер, протонами с энергией выше 5 ГэВ; фрагментация тяжёлых ядер, в том числе методами радиохимии, в широком диапазоне больших энергий нейтронов; скорости дезактивации мишеней после различных доз облучения; энерговыделение на мишенях из различных материалов.

Создание головного образца ядерного реактора нового типа.

В этом пункте необходимо будет разработать проект нового реактора по существующим стандартам. Лучше всего работа может быть реализована в рамках международного проекта. Исследовательский этап целесообразно проводить (в первую очередь из соображений стоимости) на ускорителях Института физики высоких энергий (ИФВЭ, г. Протвино). Необходимая минимальная кооперация включает в себя ВНИИАМ, ИФВЭ, Институт прикладной математики им. М.В. Келдыша, Радиевый институт им. В.Г. Хлопина, Физико-энергетический институт (г. Обнинск) или ОКБ Гидропресс. Реализация проекта может занять 8–10 лет. Два-три года необходимо на исследовательский этап и 6–8 лет – на создание опытного образца реактора.

Программа работ первого этапа, включающая в себя создание нескольких секций ускорителя на обратной волне, легче всего может быть реализована во вновь созданном Московском филиале РФЯЦ-ВНИИЭФ. Это связано с тем, что РФЯЦ-ВНИИЭФ располагает уникальными возможностями по изготовлению ускоряющих структур. Более того, изготовление этих элементов ускорителя уже начато. Кроме того, РФЯЦ-ВНИИЭФ имеет очень большой опыт работы с ИФВЭ. Такой филиал, например, может быть создан на базе ВНИИАМ или его части. Объём финансирования первого этапа на два-три года составит примерно 4–5 млрд рублей.

Программа работ второго этапа должна разрабатываться во время проведения работ по первому этапу.

Детально предварительная программа ЯРТ, её составные части, оценки необходимого финансирования рассмотрены и одобрены расширенным Научно-техническим советом Всероссийского научно-исследовательского и проектного института атомного машиностроения, Москва (НТС ВНИИАМ) и Международной научной конференцией «Глобальные проблемы безопасности современной энергетики» – к 20-летию катастрофы на Чернобыльской АЭС (4–6.04.06, Москва). Фундаментальные основы программы ЯРТ доложены на годичном собрании РАН 2005 года. В 2009–2011 гг. проведена серия совещаний с участием РАН, МО РФ, ВНИИАМ, РФЯЦ-ВНИИЭФ и др. у председателя Совета Федерации С.М. Миронова, на которых концепция ЯРТ была полностью поддержана.

В настоящее время работы по энергетическим применениям ЯРТ несанкционированно ведутся в ОИЯИ (г. Дубна) в качестве продолжения работ по контракту с ЦРУ США (фирма DTI) под предлогом проведения работ по «фундаментальной физике». Сегодня фундаментальная физика — это поиск осцилляций нейтрино, бозонов Хиггса, но никак не энергетическая технология, пусть даже самая передовая. Эти работы просто направлены на то, чтобы лишить Россию приоритета в энергетической области. Такие работы обязаны вестись под строгим государственным контролем и своевременным оформлением патентных прав, в том числе и за рубежом.

В настоящее время энергетические проблемы в мире резко обострились. В силу всего сказанного для решения энергетических проблем человечества альтернативы развёртыванию работ по ЯРТ энергетике сегодня просто не существует. Тем не менее, Росатом в России уже около 20 лет блокирует эти работы, препятствуя созданию реальной программы энергетического обеспечения человеческой цивилизации в XXI веке. При реализации схемы ЯРТ в промышленном масштабе – ядерная энергетика станет доступной всем, без исключения, странам и позволит окончательно снять проблему нераспространения.

Авторы:

Волков В.И. — проф., директор Академии геополитических проблем

Острецов И.Н. — д-р техн. наук, проф., гл. науч. сотр. ОАО ОКБ «Гидропресс»

Список литературы:

  1. Атомная энергия, т. 112, вып. 3, март 2012 г.

Будущее атомной индустрии

Совсем недавно Европарламент принял методологию определения подходов к финансированию тех или иных отраслей. Пока еще не все отрасли, включая нашу, получили окончательное подтверждение в этой методологии. По вопросу атомной энергетики продолжается дискуссия.

Зеленая экономика

«Зеленое» финансирование в России: цели и противоречия современного рынка

Я, в принципе, с нашими коллегами из Европарламента согласен: не все страны-участницы атомной семьи на сегодняшний день имеют хорошие программы развития, в первую очередь работы с отработавшими элементами — ядерным топливом, старыми объектами.

Мировая атомная энергетика совсем молодая. Официально первый промышленный реактор был создан в Советском Союзе в 1954 году. Поэтому, конечно, не все, что связано с бэкендом, то есть с хвостом нашего производственного процесса, сейчас рядом стран осмыслено.

У меня нет сомнений, что развитие атомной энергетики останется в повестке дня и Европы и планеты в целом.

У нас в России есть полное понимание и дальнейшего развития, и выхода на замкнутый топливный цикл — постоянное рециклирование радиоактивного материала в топливной сфере. Мы создаем международные проекты и, естественно, и у себя тоже исповедуем эту идеологию.

Мы продолжаем дискуссию с европейскими органами. Но, к сожалению, эта дискуссия политизирована. И далеко не всегда ее последствия вытекают из технологий — иногда принимаются просто политически мотивированные решения.

Зеленая экономика

Как государству продвигать экологическую повестку

Никаких запретов и ограничений на развитие атомной энергетики в Евросоюзе нет. Более того, мы очень активно сейчас работаем с нашими венгерскими, финскими партнерами над их проектами, и над рестартом болгарского проекта.

Сегодняшние реалии для ядерной энергетики

Современные перспективы развития ядерной энергетики не слишком отличаются от тех, какие были еще в 1954 году (запуск первой советской АЭС). На данный момент только с помощью этого способа получения энергии можно обеспечить потребности человечества.

Некоторые скажут, что активно ведутся разработки по поиску и эксплуатации альтернативных источников. Безусловно, таковое имеет место быть. Ученые, например, давно заметили, насколько полезными могут быть природные источники – солнце и вода. Однако простые расчеты получаемого из солнечных лучей тепла дают однозначный вывод – этого количества энергии человечеству на все его нужды просто не хватит.

Такие же выводы имеются и для использования гидроэлектростанций. Хотя во многих случаях действительно реально и даже полезно переходить на альтернативные источники. Например, для обеспечения электричеством:

  • жилых секторов (частные и многоквартирные дома);
  • мини-заводов;
  • предприятий, организаций;
  • ферм и подобного.

К сожалению, запасы ядерной энергии заканчиваются. Ученые провели расчеты и получили настораживающие данные: даже с использованием энергосберегающих устройств, запасов имеющейся энергии хватить для нужд всего человечества только на 100 лет.

Такие перспективы ядерной энергетики сложно назвать радужными. Некоторые могут задаться вопросом: почему так происходит, если технический прогресс движется вперед «семимильными шагами»? Ответ довольно прост и буквально лежит на поверхности.

Почему энергии не хватит?

Все дело в том, что добыча энергии с помощью АЭС требует использования иных энергоносителей, в частности – газа. Не секрет для современного человека, что залежи природного газа неуклонно сокращаются. Человечество настолько «прожорливо», что недра Земли просто не успевают пополняться. Кроме того, следует учитывать и нынешнюю стоимость этого энергоносителя.  Она является довольно высокой.

Если говорить о России, состояние многих АЭС является если не совсем плачевным, то очень близким к нему. На переоснащение, переоборудование, элементарный ремонт и постоянное обслуживание требуются финансы, и немалые. Технически устаревшие станции просто не в силах выдавать те масштабы, которые необходимы для человечества (хотя бы его части). И не смотря на это, Россия занимает лидирующие позиции в мире по добыче ядерной энергии.

Получается, в других странах ситуация с АЭС еще сложнее? Нет, это не соответствует действительности, о чем несложно догадаться. Но только на территории РФ находятся такие объемные залежи природного газа. Проще говоря, Европа не имеет возможности добывать больше атомной энергии просто потому, что у нее нет для этого достаточного количества энергоносителей.

Ядерная энергетика на данный момент является единственной возможность удовлетворять «аппетиты» человечества по количеству потребляемой энергии. К сожалению, перспективы развития ее слишком туманны. Хотя, многие страны заявляют о своих намерениях повышать уровень выработки энергии с помощью АЭС. Вопрос только в том, где они собираются добывать для этого газ?

Где штаб аналитиков и специалистов?

Мне кажется, при любом министерстве должен существовать этакий штаб аналитиков, советников, серых кардиналов, если хотите, как угодно их назовите, которые должны анализировать громадный массив информации и отделять зерна от плевел, определяя стратегию развития. К сожалению, особенно сегодня, решения зачастую принимаются без должного анализа. Руководство отрасли должно заниматься аналитикой и стратегическим планированием, четко понимать, в каком направлении дальше развиваться отрасли. А это должно основываться на правильной аналитике.

Плохо то, что мы действительно забыли о понятии «критичные металлы», о том, что нужно для развития атомной отрасли, для ее бесперебойной работы. В моем понимании, очень нужен иттрий, бериллий, литий, очень нужна средняя тяжелая группа — это неодим, празеодим, диспрозий. Эти элементы действительно нужны ближайшие 5–10–15 лет. Да, мы определили, что эти элементы нам нужны. Я задам простой вопрос: господа начальники, господа технологи, мы получили эти элементы. А что мы с ними будем делать? У нас вторичная промышленность готова, чтобы делать изделия из этих элементов? Кто будет делать, есть ли эти предприятия? Первое, могут нам сказать, что да, мы делали опытные образцы. Вопрос в другом. Вы сделали что-то, а это конкурентоспособно? Этот продукт русский и это будет продукт, который по своим характеристикам лучше, чем немецкий, и так далее? Это как с телевизором. Вам, как потребителю, поставим русский телевизор и поставим японский. Я уверен, вы купите японский. Вот в чем вопрос — готова ли промышленность правильно использовать редкие земли и в нужном направлении. Готовы ли мы делать из них конкурентоспособный продукт или мы произвели редкие земли, чтобы продать на рынке? Нас не пустит Китай с нашими редкими землями на рынок. Здесь комплекс проблем, которые мы должны комплексно решать, а мы же только декларируем.

Но гораздо хуже то, что идет старение кадрового персонала, потенциала в министерстве, в госкорпорации. И это, к сожалению, особенно наглядно в сырьевом дивизионе. А сырьевой дивизион — это основа основ. Если у вас не будет сырья, то не из чего будет что-то делать. Железо-то можно понастроить, а чем железо питать? Мы не зря говорим о том, что нам надо думать и рассматривать многообразие источников сырья, в том числе и тория. Наряду с этим не надо забывать об уране, не надо забывать о накопленных запасах (природный компонент 238 в разных формах). Все это надо использовать в узконаправленном, грамотном, нормальном, обоснованном сегменте, в разных вариантах. Выпускника Гарварда в шахту не отправишь, юриста в металлургический цех тоже. Не пойдут они туда. А кто сейчас готовит таких специалистов? На Урале существовала целая отрасль, связанная непосредственно с Минсредмашем, — это химическое машиностроение. Мощнейшие заводы химического машиностроения на Урале.

Можно ли сделать атомную энергию безопасной?

Сложно сделать атомную энергию еще более безопасной, чем она есть сейчас. Согласно исследованию одного из крупнейших медицинских журналов Lancet, атомная энергия — самая безопасная среди всех остальных источников энергии. Она безопаснее ветряков и солнечных панелей.

Рассмотрев данные об авариях в Фукусиме и Чернобыле, ВОЗ обнаружила, что бòльшая доля вреда была вызвана паникой.

ООН провела комплексные исследования катастрофы в Чернобыле. Взрыв на ЧАЭС — это худшая ядерная авария из всех случившихся. В результате нее погибло 28 человек от острого лучевого синдрома, и еще 15 человек умерло за последующие 25 лет от рака щитовидной железы. 16 тыс. человек заболели после Чернобыля раком щитовидной железы: по оценкам, 160 из них умрет от этого вида рака.

Ядерная катастрофа в Фукусиме занимает второе место по тяжести последствий. Выброс радиации был намного меньше, чем в Чернобыле. От облучения после Фукусимы нет смертельных случаев. Погибли 1,5 тыс. человек, которых вытащили из домов престарелых и больниц. Они получили большую дозу радиации только потому, что их перемещали на большое расстояние. Во многом это стало следствием общей паники.

Для человека, живущего в большом городе вроде Лондона, Берлина или Нью-Йорка, риск смертности увеличивается на 2,8% только от загрязнения воздуха. Для тех, кто живет рядом с курильщиками — на 1,7%. Для ликвидаторов аварии в Чернобыле, которые получили дозу радиации 250 миллизиверт, она увеличилась на 1%.

Зеленая экономика

Три шага до урны: как снизить ущерб природе от сигаретных окурков

Для сравнения, топливная энергетика создает неконтролируемые отходы в виде выбросов парниковых газов — от них умирают 7 млн человек в год. Поэтому сокращение топливной энергетики в пользу атомной уже спасло жизни 1,8 млн человек. К какому выводу пришел климатолог Джеймс Хансен.

А что насчет отходов? Отходов атомной энергетики мало. Если взять ядерные отходы за всю историю США и наполнить ими футбольный стадион, их высота будет всего 6 метров. Отходы хранятся в специальных изолированных контейнерах, и они постоянно под наблюдением. К тому же, сейчас ведутся разработки по использованию ядерных отходов в качестве топлива.

Что насчет ядерного оружия? Нет примеров того, как страны с атомной промышленностью вдруг начинали создавать ядерное оружие. На самом деле, происходит обратное. Оказывается, единственный известный способ избавиться от большого количества ядерного оружия — использовать плутоний из боеголовок в качестве топлива для АЭС.

Полную версию выступления Майкла Шелленбергера можно посмотреть на TED c русскими субтитрами:

В движении к целям устойчивого развития тоже должны быть приоритеты

Одна из целей устойчивого развития — это недорогая и чистая энергия. Для нас это означает в первую очередь расширение присутствия в энергоповестке.

Мы приблизились к 20% удельной генерации (президент ставит задачу перейти к 25%), и вышли на международные рынки. По объемам выбросов парниковых газов на всем жизненном цикле мы чуть-чуть отстаем от ветроэнергетики: там 11 т CO2-эквивалента на гигаватт-час, а у нас — 12 т на гигаватт-час.

Все остальные виды генерации — уголь, тепловая генерация, солнечная и гидрогенерация, — сейчас кратко превышают количество выбросов на жизненном цикле. Поэтому мы начинаем, естественно, с атомной генерации.

Зеленая экономика

Меньше денег, больше эффекта: 10 мировых трендов в «зеленой» энергетике

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector