«гексоген, однозначно»: трагедия в магнитогорске обрастает фейками

Великобритания

В Соединенном Королевстве (Великобритания) RDX изготавливался с 1933 года исследовательским отделом на экспериментальном заводе в Королевском арсенале в Вулвиче (Лондон), а на более крупном пилотном заводе, построенном в аббатстве RGPF Waltham недалеко от Лондона, в 1939 году. В 1939 году двухкомпонентный промышленный завод был спроектирован для установки на новом участке площадью 700 акров (280 га), ROF Bridgwater, вдали от Лондона, а производство RDX началось в городе Бриджуотер на одном объекте в августе 1941 года.

Завод ROF Bridgwater использовал в качестве сырья аммиак и метанол: метанол превратился в формальдегид, а часть аммиака превратилась в азотную кислоту, которая была сконцентрирована на производстве RDX. Остальную часть аммиака подвергали взаимодействию с формальдегидом с получением гексамина. Завод гексамина был построен компанией Imperial Chemical Industries. Он включал некоторые функции, основанные на данных, полученных в США (США). RDX получали путем непрерывного добавления гексамина и концентрированной азотной кислоты в охлажденную смесь гексамина и азотной кислоты в нитраторе. Состав гексогена при этом не менялся. RDX очищали и обрабатывали по назначению; также было проведено восстановление и повторное использование метанола и азотной кислоты. Очистные установки гексамин-нитрования и RDX были дублированы, чтобы обеспечить некоторую страховку от потери продукции из-за пожара, взрыва или воздушного нападения.

Соединенное Королевство и Британская империя боролись без союзников против нацистской Германии до середины 1941 года и должны были быть самодостаточными. В то время (1941) Великобритания имела способность производить 70 тонн (71 т – 160 000 фунтов) RDX в неделю; и Канада, и США рассматривались как клиенты для поставок боеприпасов и взрывчатых веществ, включая RDX. Предполагается, что к 1942 году ежегодные потребности Королевских ВВС составляли 52 000 тонн (53 000 тонн) RDX, большая часть которых поступала из Северной Америки (Канада и США). Модель формулы гексогена – на картинке ниже.

Гексоген (RDX)

Гексоген (RDX)

(CH2)3N3(NO2)3 — циклотриметилентринитроамин

Одно из самых сильных и высокобризантных применяемых ВВ. Используется либо в сплавах, либо с флегматизирующими добавками. В чистом виде используется для снаряжения капсюлей-детонаторов, а также для борьбы тараканами (это не шутка, им пользуются работники заводов, на которых он производится). Плавится гексоген с разложением, при этом чувствительность его к механическим воздействиям сильно повышается, поэтому его не плавят, а прессуют. Представляет собой белое кристаллическое вещество, уд.в. 1,8, температура плавления 205 С с разложением.

Плохо прессуется, поэтому его флегматизируют в ацетоне. Без запаха, вкуса, сильный яд (классно тараканов травить). Перекристаллизовывают из уксусной кислоты. Не гигроскопичен, плохо растворим в спирте, воде, эфире, хорошо в ацетоне. Чувствительность к удару занимает среднее положение между тетрилом и ТЭНом. Скорость детонации 8360 м/сек, фугасность 470 мл, объем газообразных продуктов взрыва — 908 л/кг, температура вспышки 230C, теплота разложения — 1370 ккал/кг. Применяют для снаряжения снарядов малого калибра, кумулятивных зарядов, детонаторов, также используется в пластиковых взрывчатках, например: 88 г тонко измельченного гексогена и 122 г смазочного масла или 78 г гексогена и 22 г смолистого связующего из нитропроизводных ароматических углеводородов и нитроцеллюлозы.

Первый способ

Необходимые вещества: Динитрат уротропина, азотная кислота.

Из динитрата уротропина получается больший выход гексогена, чем из чистого уротропина, также на выход гексогена влияет концентрация азотной кислоты. На выход гексогена также влияют окислы азота, которые вызывают окисление -(выгорание) уротропина. Гексоген образовавшийся при нитролизе динитрата уротропина будет почти полностью растворен в отработанной к-те. С целью его выделения полученный р-р необходимо разбавить до концентрации кислоты не более 60% при которой растворимость гексогена весьма ничтожно

Очень важно не допускать повышения температуры. Для получения гексогена берут динитрат уротропина и конц

азотную кислоту или меланж,состоящий из азотной кислоты + серной кислоты + воды.

Второй способ

Необходимые вещества: уксусная кислота (конц.), аммиачная селитра (нитрат аммония), уротропин (сухое горючее, гексаметилентетрамин), азотная кислота, уксусный ангидрид.

Проведение этой реакции не требует применения больших количеств уротропина и азотной кислоты. Вначале приготавливают р-ры уротропина в ледяной уксусной к-те и нитрата аммония в азотной кислоте. Нагреть растворы, одновременно нагревают и уксусный ангидрид. Приготовленные р-ры сливают в уксусный ангидрид. Слив компонентов производят при 70-75 С. По окончании слива смесь выдерживают 15-20 мин при той же температуре, а затем в нитромассу приливают воду. Промывают. Фильтруют. Сушат, обычно, в вакуум-сушилках при 60 С

Третий способ

Необходимые вещества: уротропин (сухое горючее, гексаметилентетрамин), азотная кислота (конц.), сода (бикарбонат натрия).

Берутся две кастрюли, ставятся одна внутрь другой. Во внешнюю наливается вода с температурой 20 — 30 градусов, а во внутреннюю наливается 120 мл. азотной кислоты. В азотную кислоту медленно добавляется 70 грамм измельченного Уротропина. Уротропин добавляется по половине чайной ложки за раз, в течении этой процесса необходимо постоянно поддерживать температуру во внешней кастрюле на уровне 20 — 30 С. Когда весь Уротропин растворится в азотной кислоте, необходимо повысить температуру во внешней кастрюле до 50 С и поддерживать ее в течении 10 минут. После этого внутреннюю кастрюлю ставят в другую кастрюлю с ледяной водой, и охлаждают до температуры 20 С. Потом в смесь добавляют 750 мл холодной воды, после этого появится белая соль. Смесь фильтруется (нам нужна соль). Потом с солью смешивается чайная ложка соды (для нейтрализации кислоты). Смесь оставляется на 2-3 минуты, затем смесь снова промывается и сушится. Гексоген можно очистить перекристаллизацией из ацетона.

Публикувано от: Ради Георгиев

Гексоген (взрывчатые вещества)

Гесоген (правильное название — триметилентринитроамин) бризантное взрывчатое вещество, относящееся к группе ВВ повышенной мощности. Плотность 1.8 г/куб.см., температура плавления 202 градуса, температура вспышки 215-230 градусов, чувствительность к удару 10 кг. груза 25 см., энергия взрывчатого превращения 1290 ккал/кг, скорость детонации 8380 м/сек., бризантность 24 мм., фугасность 490 куб.см.

Нормальное агрегатное состояние — мелкокристаллическое вещество белого цвета без вкуса и запаха. В воде не растворяется, негигроскопичен, неагрессивен. С металлами в химическую реакцию не вступает. Прессуется плохо. От удара, прострела пулей взрывается. Загорается охотно и горит белым ярким шипящим пламенем. Горение переходит в детонацию (взрыв)

В чистом виде применяется только для снаряжения отдельных образцов капсюлей-детонаторов. Для подрывных работ в чистом виде не используется. Используется для промышленного изготовления взрывчатых смесей (ПВВ-4 (пластит), ЭВВ, ТГА, МС, ТГ-50). Обычно эти смеси применяются для снаряжения некоторых видов боеприпасов. Например, МС для морских мин, ТГ-50 для кумулятивных зарядов. С этой целью чистый гексоген смешивают с флегматизаторами, (обычно это смесь парафина и церезина), окрашивают суданом в оранжевый цвет и прессуют до плотности 1.66 г./куб.см. В смеси ТГА и МС в гексоген добавляют алюминиевую пудру. Все эти работы проводятся в промышленных условиях на специальном оборудовании

От автора.

С лета 1999 года слово «Гексоген» сверлит ухо также, как долгие годы у журналистов не было иного названия для взрывчатки кроме как «Динамит». Название «гексоген» стало популярным в средствах массовой пропаганды после памятных диверсионных актов в Москве и Волгодонске , когда подряд было взорвано несколько домов. Однако, судя по отдельным признакам, несложным расчетам, проведенных автором на основе данных, приводимых в прессе, скорее всего в этих случаях применялось одно из аммиачноселитренных взрывчатых веществ. Дело в том, что гексоген в чистом виде применяется крайне редко, применение его в этом виде весьма опасно для самих взрывников, производство требует хорошо налаженного промышленного процесса. Запасов гексогена нигде не имеется. Аммиачноселитренные же ВВ сравнительно легко произвести даже на слабой промышленной базе и при минимуме химических познаний. При этом их фугасность выше, чем у тротила и их применение для подобных диверсий более целесообразно.

Веремеев Ю.Г.

Chemicals-el.ru

В 1936 г. Кноффлером был разработан метод производства гексогена, названный методом «К». Принципиальная схема технологического процесса получения гексогена по этому методу изображена на рис. 7 (см. приложение).

Уротропин нитруется раствором аммонийной селитры в концентрированной азотной кислоте. Нитрование осуществляется в две стадии. В первой стадии к раствору аммонийной селитры в азотной кислоте при температуре 20° добавляют уротропин. При этом образуется гексоген и формальдегид. Последний во второй стадии при температуре 65–70°С взаимодействует с аммонийной селитрой и азотной кислотой, образуя добавочное количество гексогена. Далее массу охлаждают.

Полученный гексоген отделяют от отработанной кислоты на барабанном фильтре, промывают водой и кристаллизуют из ацетона. В случае необходимости гексоген подвергают флегматизации.

Отработанная кислота содержит некоторое количество формальдегида, вследствие чего является нестойкой и не может быть подвергнута переработке. Поэтому вначале отработанную кислоту нагревают в специальных аппаратах при 90–95°С. При этом происходит полное окисление формальдегида и частичное разложение аммонийной селитры. Выделяющиеся при этом окислы азота и пары азотной кислоты поступают на абсорбционную установку. Стабилизированную азотную кислоту, содержащую около 48% HNO3 и 24% NH4NO3, подвергают дистилляции в специальных вакуум-аппаратах.

Основным преимуществом метода «К» является хороший выход гексогена (по формальдегиду 60% от теоретического). Серьезными недостатками метода являются: большое количество перерабатываемых материалов (на тонну гексогена перерабатывается свыше 14 т продуктов, что приводит к резкому снижению производительности аппаратуры и усложняет процесс) и весьма сложный процесс регенерации азотной кислоты и аммонийной селитры.

На одну тонну гексогена расходуется: уротропина 0,48–0,5 т, аммонийной селитры 4,8 т; азотной кислоты 8,6 т. Регенерируется аммонийной селитры 3,6 т, азотной кислоты 7,2 т .

Скорость химической реакции Вокруг нас постоянно происходят тысячи химических реакций. Горит костер и горит газ в конфорке газовой плиты, ржавеет железо, молоко превращается в творог, на фотопленке возникают изображени … Ученые обнаружили молекулу, которая уменьшает последствия сердечных приступов Ученые обнаружили молекулу, которая уменьшает последствия сердечных приступов, активируя защитный механизм, предохраняющий ткани сердца от повреждений при недостатке в них кислорода, говорится в стать …

Инновационный путь развития технологии создания новых лекарственных средств После распада СССР и государственного экономического кризиса 1998 года химико-фармацевтическая промышленность пришла в упадок. На данный момент объем продаж импортных готовых лекарственных с …

Гексоген

Немецкий ученый Ганс
Геннинг еще в 1899 году запатентовал лекарство гексоген — для лечения
воспаления в мочевых путях. Лечебный эффект у него был, но медики вскоре
потеряли к нему интерес из-за сильной побочной интоксикации. Однако в 1920 году
выяснилось, что гексоген — мощнейшая взрывчатка, существенно превосходящая
тротил.

По скорости детонации гексоген опережал все остальные
известные на тот момент взрывчатки. Сегодня гексоген остается одним из наиболее востребованных
взрывчатых веществ. Так, знаменитая взрывчатка С-4 (пластит) на 91 % состоит из
гексогена, остальное — пластификаторы. Из-за доступности и легендарной
надежности С-4 часто используется террористами по всему миру.

США

В начале 1940-х годов крупнейшие производители взрывных устройств США, E. I. Pont de Nemours & Company и Hercules, имели многолетний опыт производства тринитротолуола (TNT) и не хотели экспериментировать с новыми взрывчатыми веществами. Армия США использовала ту же точку зрения и хотела продолжить использование TNT. RDX был проверен Пикатинским Арсеналом в 1929 году, и он считался слишком дорогим и слишком чувствительным. ВМС предложили продолжить использование пикрата аммония. Напротив, Национальный исследовательский комитет обороны (НКРР), посетивший Королевский арсенал, Вулвич, считал, что нужны новые взрывчатые вещества. Джеймс Б. Конант, председатель Отдела B, пожелал продолжить научные исследования в этой области. Таким образом, Конант создал экспериментальную лабораторию исследований взрывчатых веществ в Бюро шахт, Брюссель, штат Пенсильвания, с использованием средств Управления научно-исследовательскими и опытно-конструкторскими работами (OSRD). Применение гексогена было в основном военным.

В 1941 году британская миссия Tizard посетила отделы армии и флота США, а часть предоставленной информации включила детали метода Woolwich по производству RDX (гексогена) и его стабилизации, смешав его с пчелиным воском. Великобритания просила, чтобы США и Канада в совокупности поставляли 220 тонн (440 000 фунтов) RDX в день. Решение было принято Уильямом П. П. Блэнди, начальником Бюро боеприпасов, и было решено принять RDX для использования в шахтах и ​​торпедах. Учитывая непосредственную потребность в RDX, боевое подразделение США по просьбе Блэнди построило завод, который тут же скопировал оборудование и процесс, используемый в Woolwich. Результатом этого послужили работы по охране боеприпасов Вабаша под управлением E. I. du Pont de Nemours & Company. В то время в этих работах был задействован самый крупный завод по производству азотной кислоты в мире. Процесс Woolwich был дорогим; для каждого фунта RDX понадобилось 11 фунтов (5,0 кг) сильной азотной кислоты.

Гексоген

Еще в 1899 году для лечения воспаления в мочевых путях немецкий химик Ганс Геннинг запатентировал лекарство гексоген – аналог известного уротропина. Но вскоре медики потеряли к нему интерес из-за побочной интоксикации. Только через тридцать лет выяснилось, что гексоген оказался мощнейшим взрывчатым веществом, причем, более разрушительным, чем тротил. Килограммовая взрывчатка гексогена произведет такие же разрушения, как и 1.25 килограмм тротила.

Специалисты-пиротехники в основном характеризуют взрывчатые вещества фугасностью и бризантностью. В первом случае говорят об объеме газа, выделенного при взрыве. Мол, чем он больше, тем мощнее фугасность. Бризантность, в свою очередь, зависит уже от скорости образования газов и показывает, как взрывчатка может дробить окружающие материалы.

10 грамм гексогена при взрыве выделяют 480 кубических сантиметров газа, тогда как тротил – 285 кубических сантиметров. Иными словами, гексаген в 1.7 мощнее тротила по фугасности и динамичнее в 1,26 раза по бризантности.

Однако в СМИ чаще всего использует некий усредненный показатель. Например, атомный заряд «Малыш», сброшенный 6 августа 1945 года на японский город Хиросима, оценивают в 13-18 килотонн в тротиловом эквиваленте. Между тем это характеризует не мощность взрыва, а говорит о том, сколько необходимо тротила, чтобы выделилось столько же тепла, как и при указанной ядерной бомбардировке.

Это интересно: Пожарный МЧС России: обязанности и права, оклад и зарплата

A-IX-2 или как Ледин решил нерешаемую задачу

Не взрывчаткой ТГА поразил специалистов инженер Ледин, она была его разминкой. К 1941 году он решил проблему, над которой до этого 30 лет безуспешно бились химики всех стран и к тому времени стали эту проблему считать неразрешимой в принципе. Вот в чем дело.

Уже к началу века черный порох в артиллерийских снарядах стали заменять более сильными взрывчатыми веществами. Идеальным взрывчатым веществом для этих целей стал тринитротолуол (ТНТ, тол). Он безопасен в обращении, надежен, легко заливается в корпуса снарядов. Он идеален практически для всех видов снарядов… кроме бронебойных.

При падении снаряда на землю, при ударе его о не очень твердые препятствия тринитротолуол выдерживает сотрясение и взрывается только тогда, когда его подорвет детонатор взрывателя. Но бронебойный снаряд летит с очень высокой скоростью, и его удар о броню очень резкий. Тринитротолуол не выдерживает удара и взрывается немедленно. Снаряд разрушается на броне и броню пробить не может.

Для того чтобы тринитротолуол преждевременно не взрывался, в него вводят флегматизаторы — вещества, делающие взрывчатку более устойчивой к удару. Но при этом падает мощность взрыва чуть ли не до мощности черного пороха. Химики брали более мощные взрывчатые вещества, но они практически все еще более нежные и уже не выдерживают не только удара о броню, но даже толчка при выстреле — взрываются прямо в стволе пушки. Таким взрывчатым веществам, чтобы они преждевременно не взрывались, нужно вводить флегматизаторы в увеличенных объемах, после чего мощность их взрыва становится, как у тринитротолуола — овчинка выделки не стоит. С начала века по начало Второй мировой войны химики перепробовали все и пришли к выводу, что эту задачу решить невозможно.

Так вот, в 1938 году Ледин взялся изобрести взрывчатое вещество для бронебойных снарядов, которое бы было в два раза мощнее тринитротолуола! Когда он разработал техзадание на это вещество, то все ученые, профессоры и прочие специалисты просто сочли его безграмотным дураком. Но поскольку Ледин был вольнонаемным при военной лаборатории, то начальство не возражало, чтобы он «побаловался» над решением нерешаемой задачи.

В это время случилась неприятность — Ледина призвали в армию. Специалисты в лаборатории были очень нужны, и начальство предложило присвоить ему офицерское звание и включить в штат лаборатории. Ему бы предоставили квартиру, высокий оклад, пайки и т.д. и т.п. Но в этом случае Ледин уже не смог бы заниматься своей взрывчаткой и вынужден был бы работать по плану лаборатории. И Ледин отказывается становиться офицером. Его призывают на службу матросом, но, правда, лаборатория добивается, чтобы он служил при ней. Теперь у Ледина не хватает денег снимать квартиру, содержать семью. Он отправляет ребенка к матери, они с женой ночуют по углам у друзей, меняя эти углы каждую ночь. Но Ледин упорно работает над своим изобретением и к началу войны создает взрывчатку, которая выдерживает удар снаряда о броню, но мощнее тринитротолуола более чем в 2 раза!

Уже по этой причине Ледин — выдающийся советский инженер и ученый! Но и это не все…

Снаряды, снаряженные взрывчаткой Ледина (он назвал ее A-IX-2), стали обладать такой высокой температурой взрыва, что поджигали внутри танка все, что могло гореть. Из-за этого они одно время назывались еще и зажигательными. А зенитные снаряды, снаряженные этой взрывчаткой, резко увеличили эффективность: был случай, когда одним удачно посланным 130-мм снарядом было сбито сразу звено из 3-х немецких бомбардировщиков. Если же стрельба велась ночью, то вспышки взрывов были настолько яркими, что немецкие летчики слепли и уже не видели ни земли, ни приборов, ни соседних самолетов. Но и это все еще не все.

Когда немцы добыли эти наши бронебойные снаряды, снаряженные взрывчаткой Ледина, то немецкая химия попыталась ее воспроизвести. Захваченный после войны отчет немецкого института Chemisch-Technische Reichanstalt Institut начинается с приказа Гитлера открыть секрет взрывчатки Ледина. В отчете описывается огромная работа немецких химиков по разгадке секрета этой взрывчатки. Из чего она создана, они, разумеется, немедленно поняли. Но как Ледин ее создал, они до конца войны понять не смогли. Эстафету у немцев приняли химики НАТО, США, Европы и всего мира. Бесполезно!

СССР сумел сохранить тайну, и 50 лет бронебойные снаряды, боевые части ракет были у Советской Армии самыми мощными в мире!

Инженер Ледин опередил своих коллег во всем мире на 50 лет, а если бы СССР не уничтожили и тайну взрывчатки не продали Западу, то, возможно, эта цифра удвоилась бы.

История

Открытие

Гексоген был синтезирован в первый раз в 1899 году в немецком языке , Георга Фридриха Henning (патент N ö 104280), и был использован в медицине. Только в 1920 году Герц признал гексоген как взрывчатое вещество, ему удалось синтезировать его путем прямого нитрования гексамина, но выходы были низкими, а процесс был дорогим и непривлекательным для производства в больших масштабах. В 1925 году в Пикатинни Арсенал был разработан процесс производства гексогена с выходом 68%. В 1940 году Росс и Шисслер в Канаде сумели разработать процесс, который не требовал использования гексамина в качестве сырья. В то же время Бахман разработал способ получения гексамина из гексамина, но с лучшим выходом.
Продукты Бахмана были известны как гексоген типа B и содержали 8-12% примесей. Впоследствии Брокман разработал процесс прямого синтеза чистого гексогена, который стал гексогеном типа А.

Вторая мировая война

RDX использовался во время Второй мировой войны во многих соединениях.

Пример составов взрывчатых веществ, использованных во время Второй мировой войны с гексогеном
Фамилия Состав
Композиция А 88,3% гексогена и 11,7% невзрывчатого пластификатора
Композиция B Гексоген, тротил и воск
H-6 45% гексоген, 30% тротил, 20% алюминий и 5% воск
PTX-1 30% гексоген, 50% тетрил и 20% тротил
PTX-2 41-44% гексоген, 26-28% тэна и 28-33% тротила
ПВА-4 90% гексоген, 8% поливинилацетат и 2% дибутилфталат
СПЕЛЫЙ 85% гексоген и 15% «масло Gulf Crown E Oil»
Торпекс 42% гексоген, 40% тротил и 18% алюминия

Английские и канадские постановки

В Великобритании гексоген производился с 1933 года на заводе Royal Dockyard в Вулидже , более крупном заводе, построенном в RGPF Waltham Abbey в 1939 году. В 1939 году промышленный завод был построен на этом месте, ROF Bridgwater , далеко. из Лондона  ; Производство гексогена началось в Бриджуотере в 1941 году. Великобритания пыталась быть самодостаточной на ранних этапах войны, потому что в то время США все еще были нейтральной страной; Канада, член Британского Содружества , была назначена поставщиком боеприпасов и взрывчатых веществ, включая гексоген. В 1941 году в Квебеке , в небольшом муниципалитете Лак-а-ла-Торту на окраине Шавинигана , была основана компания Shawinigan Chemicals , первый завод по производству гексогена в Северной Америке .

Немного другой метод был найден и использован в Канаде, но все еще с использованием гексамина, возможно, в Университете Макгилла на химическом факультете. Урбански подробно описывает пять методов производства.

Соединенные Штаты и процесс Бахмана

В начале Второй мировой войны правительство США обратилось к Tennessee Eastman Company (TEC), в Kingsport в Теннесси, чтобы разработать непрерывный процесс производства гексогена. Соединенные Штаты незаметно начали поиски производства гексогена в больших количествах. Вернер Эммануэль Бахманн из Мичиганского университета разработал процесс, который требовал большого количества уксусного ангидрида вместо азотной кислоты в «старом британском процессе Вулвича». ВФевраль 1942 г., TEC построила завод Wexler Bend и начала производство гексогена в небольших количествах. Это привело к тому, что правительство США разрешило TEC спроектировать и построить Holston Ordnance Works (HOW) (с тех пор называвшееся Holston Army Ammunition Plant  ) вИюнь 1942 г.в Кингспорте , штат Теннесси. Было обнаружено, что процесс синтеза гексогена Бахмана богаче октогеном, чем британский. Позже это привело к строительству завода по технологии Бахмана в ROF Bridgewater в 1955 году, производящего столько же гексогена, сколько и октогена.

Процесс основан на nitrolysis из гексаметилентетрамина . Можно получить гексоген или октоген .

История создания

Циклотриметилентринитрамин был впервые синтезирован в 1897 году в Германии. Несмотря на то, что это было сделано специалистом прусского военного ведомства — инженером и химиком Ленце, в качестве основного потенциального предназначения этого вещества рассматривалась медицинское. Вещество обладало сходными свойствами с уротропином, который использовался как антисептик и препарат для лечения инфекций мочевыводящих путей.

В дальнейшем над улучшением лекарственных свойств циклотриметилентринитрамина начал работать другой германский химик — Геннинг, запатентовавший это вещество в 1899 году как динитрат уротропина. Ввиду своей сильной ядовитости медицинских перспектив новое вещество не получило и надолго оказалось забытым.

Но в 1920 году ситуация резко изменилась стараниями немецкого химика Герца. Исследуя циклотриметилентринитрамин, этот учёный смог обнаружить более эффективное направление его применения — в качестве взрывчатки, существенно превосходящей тротил. В новом качестве вещество было тогда же запатентовано под более простым и звучным именем «гексоген» (hexogen) отражавшим обилие цифр «6» при воспроизведении упрощённой химической формулы его состава — C3H6N6O6.

Структурная формула гексогена

Скорость детонации гексогена на тот момент превышала все известные взрывчатые вещества. А точно определить бризантную способность новой взрывчатки Геннинг не смог, поскольку она полностью уничтожала свинцовый столбик, используемый в принятой тогда методике вычислений.

Впрочем, у новой взрывчатки сразу обнаружились серьёзные недостатки. В отличие от нечувствительного к внешним воздействиям тротила, гексоген оказался весьма неустойчив и к ударам, и к трению. Эту проблему удалось быстро решить за счёт так называемой флегматизации — смешивания с определёнными веществами-стабилизаторами.

Первый крупный итог практического применения гексогена отмечен в 1930-х годах в Великобритании при создании взрывающейся начинки для противолодочного оружия. Для обеспечения секретности на тот момент это вещество обозначили ничего конкретно не значащим термином Research Department Explosive («Взрывчатка Департамента Исследований»). Но возникшая аббревиатура RDX в дальнейшем так и осталась общепринятым названием этой взрывчатки для всёх англоязычных стран.

Гексоген в гранулах и порошке

Другие названия и история

Гексоген также известен, но реже, в качестве циклонита, RDX (особенно на английском, французском, немецком языках), T4 и химически в виде циклотриметилентринитрамина. В 1930-х годах Королевский Арсенал, Вулвич, начал исследование циклонита для использования против немецких подводных лодок, которые строились с более толстыми корпусами. Цель состояла в том, чтобы развить взрывчатку, более энергичную, чем ТНТ. По соображениям безопасности, Британия назвала институт исследования циклонита «Исследовательским департаментом по взрывам» (R.D.X.). Термин RDX появился в Соединенных Штатах в 1946 году. Там не знают, что такое гексоген, ведь это слово для RDX используется почти исключительно в русском языке. Первая публичная ссылка в Соединенном Королевстве на имя RDX или R.D.X. для использования официального названия появилась в 1948 году; ее авторами были управляющий химик, ROF Бриджуотер, отдел химических исследований и разработок, Вулвич и директор Королевских боеприпасов, взрывчатых веществ; опять же, это вещество называлось просто RDX.

Дальнейшее производство

НКРР поручил трем компаниям разработать опытные установки. Это были: компания Western Cartridge, E. I. du Pont de Nemours & Company и компания Теннесси Истман, часть Eastman Kodak. В Eastman Chemical Company (TEC), ведущем производителе ангидрида уксусной кислоты, Werner Emmanuel Bachmann разработал непрерывный процесс для создания RDX. RDX имел решающее значение для военных операций, и тогдашний процесс его производства был слишком медленным. В феврале 1942 года TEC начал выпускать небольшие объемы RDX на своем экспериментальном заводе Wexler Bend, что привело к тому, что правительство США разрешило TEC проектировать и строить Works of Holston Ordnance Works (HOW) в июне 1942 года. К апрелю 1943 года там производился RDX. В конце 1944 года завод «Холстон» и завод боеприпасов «Вабаш», в котором использовался процесс Вулвича, производили 25 000 коротких тонн (23 000 тонн — 50 миллионов фунтов) композиции «В» в месяц.

Октоген

В 1942 году американский химик Бахманн, проводя опыты с гексогеном, случайно обнаружил новое вещество октоген, причем в виде примеси. Свою находку он предложил военным, однако те отказались. Между тем, через несколько лет, после того, как удалось стабилизировать свойства этого химического соединения, в Пентагоне всё же заинтересовались октогеном. Правда, в чистом виде в военных целях он широко не применялся, чаще всего в литьевой смеси с тротилом. Эта взрывчатка получила название «октолом». Она оказалась на 15% мощнее гексогена. Что касается её эффективности, то считается, что один килограмм октогена произведет столько же разрушений, что и четыре килограмма тротила.

Впрочем, в те годы производство октогена было в 10 раз дороже изготовления гексогена, что сдерживало его выпуск в Советском Союзе. Наши генералы подсчитали, что лучше произвести шесть снарядов с гексогеном, чем один – с октолом. Именно поэтому так дорого обошелся американцам взрыв склада боеприпасов во вьетнамском Куи-Нгоне в апреле 1969 года. Тогда официальный представитель Пентагона заявил, что из-за диверсии партизан ущерб составил 123 миллиона долларов, или примерно 0.5 млрд. долларов в нынешних ценах.

В 80-х годах прошлого века после того, как советские химики, в том числе и Е.Ю. Орлова, разработали эффективную и недорогую технологию синтеза октогена, в больших объемах он стал выпускаться и у нас.

Применение

Применяют для изготовления детонаторов (в том числе детонационных шнуров) снаряжения боеприпасов и для взрывных работ в промышленности, как правило, в смеси с другими веществами (тротилом и т. п.), а также, с добавкой флегматизаторов (парафина, воска, церезина), уменьшающих опасность взрыва гексогена от случайных причин. Например, широко известная С-4 — это 91 % гексогена, 2,25 % вистанекса, 5,31 % диоктилсебацината и 1,44 % жидкой смазки.

В чистом виде используется для снаряжения капсюлей-детонаторов, и, являясь сильнейшим ядом, для борьбы с тараканами (им пользуются работники заводов, на которых он производится).

Также используется как компонент ракетного топлива, несмотря на то, что гексоген менее стабилен и даёт меньший импульс, чем, например, нитротриазолон.

SateSate и Sensibility — еще две странные фигуры в этой истории. Второй хвастался, что за месяц в DPC зарабатывает на Ролексы

Данил «SateSate» Кривенко, которого AlienManaBanana обвинил в матчфикиснге, тоже не признал свою вину. Он отметил, что никогда не участвовал в договорняках, а в подозрительном матче за Recast Gaming на ESL Meisterschaft Spring 2021 был приглашенным стендином.

У Александра «Sensibility» Филатова тоже не самая безукоризненная репутация в комьюнити. Никита «Daxak» Кузьмин поиронизировал над баном игрока и вспомнил, что тот хвастался Андрею «ALWAYSWANNAFLY» Бондаренко своим доходом с 322. С его слов, заработок Sensibility позволяет ему покупать новые часы Rolex каждый месяц, играя в нижнем дивизионе североамериканской лиги DPC.

Так или иначе, Филатов тоже отрицает свою причастность к ставкам. В комментарии для Escorenews он назвал бан несправедливым. Он отметил, что Valve забанила P1, который выступал за PSG всего до середины лиги, вопреки тому, что с ним ростер в основном побеждал. Sensibility намерен обжаловать бан.

Симптомы острого отравления:

Животные.

В клинической картине преобладали тонические судороги. Дозы 0,02-0,15 г/кг вызвали в течение месяца гибель всех мышей. На вскрытин — отек мозга и дистрофия внутренних органов. Отравление кроликов через рот дозой 7,0 мг/кг в течение 160 дней ежедневно вызвало лимфоцитоз и нарушение функций печени. У собак при длительном введении 0,1-1,0 мг/кг — нарушение локомоторной функции.

Человек.

У части рабочих, занятых сушкой и просеиванием гексогена, отравление проявлялось приступами: головная боль, головокружение, тошнота, сладковатый вкус и ощущение сухости во рту, жажда, слабость, подергивания всего тела или рук, ног, головы. В более тяжелых случаях — потеря сознания, синюха лица и конечностей, судороги, после которых — многократная рвота. При этом отмечаются расстройства вегетативной нервной системы (повышение пиломоторной реакции, потливость, учащение или замедление сердечных сокращений, повышение температуры тела, резкий дермографизм, частые позывы к мочеиспусканию), иногда расстройство сна. У части пострадавших приступам предшествуют страх, тоска, плаксивость, реже галлюцинации. Такие приступы возникали чаще в первые 6-8 месяцев работы во время рабочего дня или через несколько часов после окончания работы и даже после 1-2 дней отдыха, что, по-видимому, указывает на накопление гексогена в организме. У некоторых лиц приступы повторялись до 5 раз за время работы с гексогеном. По прекращении работы с гексогеном явления отравления быстро исчезали.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector