Откуда мы знаем, сколько лет вселенной?

Сколько лет Вселенной?

Если после прочтенного вы пришли к выводу, что радиус наблюдаемой нами Вселенной составляет всего 13,8 миллиарда световых лет, то вы не учли одной важной детали. Все дело в том, что на протяжении этих 13,8 миллиарда лет после Большого взрыва Вселенная продолжала расширяться

Другими словами, это означает, что реальный размер нашей Вселенной гораздо больше, чем указано в наших изначальных измерениях.

Поэтому для того, чтобы узнать реальный размер Вселенной, необходимо принять во внимание еще один показатель, а именно то, насколько быстро Вселенная расширялась со времен Большого взрыва. Физики говорят, что наконец смогли вывести нужные цифры и уверены в том, что радиус видимой Вселенной в настоящий момент составляет около 46,5 миллиарда световых лет

Правда, стоит также отметить, что эти подсчеты основаны лишь на том, что мы сами можем видеть. Точнее способны разглядеть в глубине космоса. Эти подсчеты не отвечают на вопрос истинного размера Вселенной. Кроме того, ученых заставляет задуматься некоторое несоответствие, согласно которому более удаленные от нас галактики в нашей Вселенной слишком хорошо сформированы, чтобы можно было считать, что они появились сразу после Большого взрыва. Для такого уровня развития потребовалось гораздо больше времени.

Необъяснимый факт, указанный выше, открывает целый ряд новых проблем. Некоторые ученые постарались посчитать, сколько потребовалось бы времени для развития этих полностью сформированных галактик. Например, оксфордские ученые пришли к выводу, что размер всей Вселенной может быть в 250 раз больше наблюдаемой.

Мы действительно способны измерить расстояния до объектов в пределах наблюдаемой Вселенной, но то, что находится за этой гранью, нам не известно. Конечно же, никто не говорит, что ученые не пытаются это выяснить, но, как уже говорилось выше, наши возможности ограничены нашим уровнем технического прогресса. Кроме того, не стоит также сразу отбрасывать предположение о том, что ученые, возможно, так никогда и не узнают настоящих размеров всей Вселенной, если учесть все факторы, находящиеся на пути решения этого вопроса.

Возникновение Солнца и планет Солнечной системы (5–4,5 млрд лет назад)

В одной из галактик (огромных скоплений звезд и их спутников-планет), которую называют Млечный Путь, находится звезда средней величины — Солнце. Восемь планет являются его спутниками и образуют Солнечную систему. На месте нашей галактики 5 млрд лет назад была пустота, или вакуум.

Для того чтобы из разбросанных в пустоте частиц возникла Солнечная система, необходимо было с колоссальной силой сжать первичное межзвездное облако. Как это произошло — мы можем только догадываться. Одно из объяснений заключается в том, что неподалеку взорвалась неизвестная нам большая звезда, ударная волна взрыва сжала межзвездное облако и привела к формированию небесных тел.

Галактика Млечный Путь

Микроскопические частицы, которые составляли облако, оказались достаточно близко друг к другу. При этом намного возросли и силы притяжения (как вы помните из физики, она обратно пропорциональна квадрату расстояния между объектами). Увеличилась плотность межзвездных облаков, и появились гигантские скопления пыли и газов — туманности.

Звездные свет и тепло плохо проходили сквозь туманности, в результате чего температура (а давление газа пропорционально ей) там понижалась почти до абсолютного нуля. В результате облака сжимались и разделялись на более мелкие части. Одна из них в итоге превратилась в Солнечную систему.

При падении давления и сжатии облака большее количество вещества переместилось к его середине. Так в центре туманности образовалось протосолнце (от греческого «протос» — первый), которое сохранило связь с оставшимися газами вокруг себя с помощью магнитного поля. Эти внешние части облака и дали начало планетам Солнечной системы.

Из протосолнца развилось наше родное Солнце. Новая звезда сконцентрировала в себе почти все вещество протосолнечной туманности. Огромное давление, которое возникло в ее ядре, вызвало цепочку термоядерных реакций.

Этапы формирования Солнечной системы

Нашему светилу около 4,57 млрд лет. Звезды такой массы и размера живут примерно 10 млрд лет, значит, Солнце сейчас находится в середине своего жизненного цикла.

Солнце, как и всякая звезда, для всех своих планет является источником энергии, выделяемой в виде света и тепла.

Поделиться ссылкой

Первый Космос

Анаксимандр был досократическим греческим философом, которого часто называют «отцом астрономии» и даже «отцом космологии» в результате его работ по объяснению происхождения и структуры физической вселенной. Он считается самым важным из ионийских философов и был учеником Фалеса . Традиционно подробности его жизни и мнения увековечиваются не только Аристотелем и Феофрастом , но и множеством второстепенных авторов. Он жил на протяжении пятого и четвертого веков до нашей эры и, скорее всего, был первым философом, который попытался рационализировать систему Земли, Солнца и Луны с помощью геометрии и математики. Говорят также, что Анаксимандр создал первую карту мира, однако, как и многие другие его работы, она была утеряна с его времени. Однако есть документальные свидетельства того, что Анаксимандр был ответственным за концепцию первой механической модели мира, которая описывается геоцентрической моделью . Он предположил, что Земля находится в самом центре Вселенной и что ее форма была выпуклой и цилиндрической, а жизнь существовала на одной из двух плоских сторон. За пределами Земли находятся другие планеты, порядок которых Анаксимандр также подробно описывает. Далее идут неподвижные звезды, которые он рассматривал как похожие на колесо сгущения воздуха, наполненные огнем, снабженные в определенных местах отверстиями, через которые выходит пламя. Анаксимандр поместил Луну за этими звездами и предположил, что она также имеет форму колеса, что в девятнадцать раз больше Земли. Наконец, на вершине Вселенной находится Солнце, которое взаимодействует с Луной, и отношения между ними описываются в терминах апертуры , остановка которой приведет к затмениям. В этой модели Солнце представляет собой кольцо, в 28 раз превышающее размер Земли, с полым ободом, наполненным огнем, которое в определенном месте видно через отверстие, как в паре мехов. Он также высказал предположение относительно образования грома и молнии, утверждая, что они вызваны тем, что ветер сжимается внутри толстого облака и внезапно прорывается сквозь него, в результате чего слышен громкий звук при разрыве облака. Он утверждал, что трещина тогда выглядела как искра из-за контраста с темным облаком. Модель Анаксимандра создала прецедент для последующих теорий, включая систему Коперника , с основным изменением, которое заключалось в отходе от геоцентрической модели к гелиоцентрической модели Вселенной. Объясненная модель, хотя и была аккредитована Анаксимандром, обязательно заимствовала идеи, возникшие в чужих культурах, такие как астрономические колеса, известные из персидской космологии. Но даже без подробных комментариев эти элементы традиции Анаксимандра производят сильное впечатление об оригинальном и мужественном мыслителе, прилагающем сознательные усилия к рациональному объяснению фундаментальных физических принципов, природы и движения небесных тел, формы земли, ее места. во Вселенной и т. д.

Как определяют расстояние в космосе

Самым простейшим методом определения расстояния в космосе является использование света. Однако если учесть то, каким образом свет распространяется в пространстве, то следует понимать, что те объекты, которые мы видим с Земли, в космосе необязательно будут выглядеть так же. Ведь для того, чтобы свет от далеких объектов достиг нашей планеты может потребоваться десятки, сотни, тысячи, а то и десятки тысяч лет.

В астрономии принято для определения расстояния использовать термин световой год. Один световой год приблизительно эквивалентен расстоянию 9 460 730 472 580 800 метров и дает нам не только представление о расстоянии, но также может говорить о том, какое количество времени потребуется свету объекта для того, чтобы нас достигнуть.

Такое расстояние сложно себе даже представить

Самым простым примером разницы времени и расстояний является свет Солнца. Среднее расстояние от нас до Солнца составляет около 150 000 000 километров. Допустим, у вас есть подходящий телескоп и защита для глаз, позволяющие вести за Солнцем наблюдение. Суть в том, что все, что вы будете видеть в телескоп, на самом деле происходило с Солнцем 8 минут назад (именно столько требуется свету, чтобы добрать до Земли). Свет Проксимы Центавра? Дойдет до нас только через четыре года. Или взять хотя бы такую крупную звезду, как Бетельгейзе, собирающуюся стать в скором времени сверхновой. Даже если бы это событие произошло сейчас, мы узнали бы о нем не раньше середины 27 века!

Свет и его свойства сыграли ключевую роль в понимании нами того, насколько огромна Вселенная. В настоящий момент наши возможности позволяют нам заглянуть примерно на 46 миллиардов световых лет наблюдаемой Вселенной. Каким образом? Все благодаря используемой физиками и астрономами шкалы расстояний в астрономии.

Черные дыры наводнят Вселенную

Черные дыры до сих пор остаются загадкой для научного сообщества

Когда нуклоны исчезнут, черные дыры войдут в права и будут править Вселенной от 1040 года после Большого Взрыва до 10100 года. С этого момента мы начинаем рассуждать о временах настолько долгих, что понять их нашим умишком совершенно невозможно. Спустя время, намного превышающее современный возраст Вселенной, единственными структурами останутся черные дыры.

Когда нуклоны уйдут, главными субатомными частицами станут лептоны — электроны и позитроны. Они будут подпитывать черные дыры. Поглощая остатки вещества во Вселенной, черные дыры будут сами излучать частицы, которые будут наполнять Вселенную фотонами и гипотетическими гравитонами. Но и черным дырам суждено умереть, как решил Стивен Хокинг.

По мнению Хокинга, черные дыры испаряются из-за своего излучения. Излучая они теряют массу в форме энергии. Этот процесс занимает много времени, поэтому мы о нем практически ничего не знаем. Чтобы черная дыра полностью испарилась, должно пройти 1060 лет, поэтому этот процесс еще не протекал до конца на веку нашей Вселенной. Но, как мы уже сказали, в конце концов умрут и черные дыры. От них останутся лишь безмассовые частицы и несколько разрозненных лептонов, которые будут лениво взаимодействовать и терять свою энергию.

Гео-гелиоцентрическая система

У Коперника появилось множество оппонентов. Датский астроном Тихо Браге, не соглашаясь поместить Солнце в центр Вселенной, предложил гео-гелиоцентрическую систему мира (впервые она была описана ещё Гераклидом Понтийским).

Концепция предполагала, что в центре мира находится неподвижная Земля, вокруг которой обращаются Солнце, Луна и звёзды. При этом планеты вращаются вокруг Земли, образуя «Земную систему». Суточное вращение Земли Тихо Браге также отрицал.

Научная революция Просвещения

Географические открытия, морские путешествия, развитие механики и оптики сделали картину мира более сложной и полной. С XVII века началась «телескопическая эпоха»: человеку стало доступно наблюдение за небесными телами на новом уровне и открылся путь к более глубокому изучению космоса. С философской точки зрения мир мыслился как объективно познаваемый и механистичный.

Первые предположения

Представляя Землю центром мира, ученые древности заранее ставили себя в тупик

Вопросом о возрасте мироздания философы задавались еще в античность. Греки и вавилоняне утверждали о вечности мира, индуисты же в 150-м году до н.э. определили точную цифру — 1 млрд. 972 млн. 949 тыс. 091 год, и среди своих современников оказались ближе всех к истине. В XVII веке английский теолог Джон Лайтфут глубоко проанализировав библейские тексты, заявил, что сотворение мира выпало на 3929 год до н.э.

Однако, известные ученые того времени, а именно немецкий астроном Иоганн Кеплер и английский физик Исаак Ньютон, опираясь не только на Библию, но и на астрономические наблюдения, все же недалеко ушли от теологов и представили 3993 и 3988 годы до н.э.

Конец «макрофизики»

Вселенная не будет такой, как прежде

К этому моменту Вселенная достигнет практически максимального состояния энтропии, то есть станет однородным полем энергии и нескольких субатомных частиц. Это будет после эпохи черных дыр, много позже после 10100 года. Пространство расширится так сильно, а темная энергия станет настолько мощной, что даже черные дыры перестанут существовать и Вселенная лишится массивных объектов.

Трудно представить себе такую Вселенную. Вы только вдумайтесь: звезды перестанут формироваться, поскольку субатомные частицы, из которых состоит материя, будут разделены такими расстояниями, что никак не смогут встретиться, путешествуя со скоростью света. Даже атомы позитрония не смогут появиться.

Физике настанет конец. Единственной физической моделью, которая продолжит работать, будет квантовая механика. Квантовые эффекты будут происходить даже на огромных межзвездных расстояниях, в гигантских временных рамках. В конце концов, температура Вселенной упадет до абсолютного нуля: не останется энергии, которую можно было бы превратить в работу. В некоторых моделях расширение пространства будет расти, разрывая пространство-время на части. Вселенная прекратит свое существование.

Пять веков Вселенной

Астрономы считают, что пять этапов эволюции являются удобным способом представления невероятно долгой жизни Вселенной. Согласитесь, во времена, когда нам известно всего 5% о видимой Вселенной (остальные 95% занимает таинственная темная материя, существование которой только предстоит доказать), судить об ее эволюции довольно сложно. Тем не менее, исследователи пытаются понять прошлое и настоящее Вселенной, объединив достижения науки и человеческой мысли двух последних столетий.

Если вам посчастливилось оказаться под ясным небом в темном месте безлунной ночью, то при взгляде вверх вас ждет великолепный космический пейзаж. С помощью обычного бинокля можно увидеть умопомрачительное небесное полотно из звезд и пятен света, которые накладываются друг на друга. Свет от этих звезд достигает нашей планеты преодолевая огромные космические расстояния и пробивается к нашим глазам через пространство–время. Такова Вселенная космологической эпохи, в которой мы живем. Она называется звездная эрой, но есть еще четыре других.

Изображение составлено исследователями Принстонского университета, основываясь на снимках, полученных космическими телескопами NASA

Существует множество способов рассмотреть и обсудить прошлое, настоящее и будущее Вселенной, но один из них больше других привлек внимание астрономов. Первая книга о пяти веках Вселенной была опубликована в 1999 году, под названием «Пять веков Вселенной: внутри физики вечности»

(последние обновления внесены в 2013 году). Авторы книги Фред Адамс и Грегори Лафлин дали название каждому из пяти веков:

  • Первобытная эра
  • Звездная эра
  • Дегенеративная эра
  • Эра Черных Дыр
  • Темная эра

Необходимо отметить, что далеко не все ученые являются сторонниками этой теории. Тем не менее, многие астрономы находят разделение на пять этапов полезным способом обсуждения столь необычайно большого количества времени.

Массовые скопления звёзд

Для того чтобы определить, сколько лет Вселенной, учёные исследуют участки космоса с большим скоплением звёзд. Находясь примерно в одной области, тела имеют сходный возраст. Одновременное зарождение звёзд даёт возможность учёным определить возраст скопления.

Используя теорию «эволюции звёзд», строят графики и проводят многолинейные вычисления. Учитываются данные объектов с одинаковым возрастом, но разной массой.


На основании полученных результатов удается определить возраст скопления. Предварительно вычислив расстояние до группы звёздного скопления, учёные определяют возраст Вселенной.

Получилось ли точно определить, сколько лет Вселенной? По расчётам учёных результат оказался неоднозначным — от 6 до 25 миллиардов лет. К сожалению, данный метод имеет большое количество сложностей. Поэтому существует серьезная погрешность.

Даты декабря “вселенского года”

  • 1 декабря: Образование кислородной атмосферы на Земле
  • 5: Интенсивное извержение вулканов на Марсе
  • 16: Первые черви
  • 17: Конец докембрийского периода. Палеозойская эра и начало кембрийского периода. Возникновение беспозвоночных
  • 18: Первый океанический планктон. Расцвет трилобитов
  • 19: Период ордовика. Первые рыбы, первые позвоночные
  • 20: Силур. Первые споровые растения. Растения начинают завоевывать сушу
  • 21: Начало девонского периода. Первые насекомые. Животные колонизируют сушу.
  • 22: Первые амфибии Первые крылатые насекомые
  • 23: Каменноугольный период. Первые деревья. Первые рептилии
  • 24: Начало пермского периода. Первые динозавры
  • 25: Конец палеозойской эры. Начало мезозойской эры
  • 26: Триасовый период. Первые млекопитающие
  • 27: Юрский период. Первые птицы
  • 28: Меловой период. Первые цветы. Вымирание динозавров
  • 29: Конец мезозойской эры. Кайнозойская эра и начало третичного периода. Первые китообразные. Первые приматы
  • 30: Начало развития лобных долей коры головного мозга у приматов. Первые гоминиды. Расцвет гигантских млекопитающих
  • 31: Конец плиоценового периода. Четвертичный (плейстоцен и голоцен) период. Первые люди.

Даты 31 декабря “вселенского года”

  • 13.30.00: Появление проконсула и рамапитека – возможных предков обезьян и человека.
  • 22.30.00: Первые люди
  • 23.00.00: Широкое использование каменных орудий
  • 23.46.00: Использование огня пекинским человеком
  • 23.56.00: Начало последнего периода оледенения
  • 23.58.00: Заселение Австралии
  • 23.59.00: Расцвет пещерной живописи в Европе
  • 23.59.20: Открытие земледелия
  • 23.59.35: Цивилизация неолита – первые города
  • 23.59.50: Первые династии в Шумере, Эбле и Египте, развитие астрономии Открытие письма; государство Аккад
  • 23.59.52: Законы Хаммурапи в Вавилонии; Среднее царство в Египте
  • 23.59.53: Бронзовая металлургия. Микенская культура; Троянская война; Ольмекская культура, изобретение компаса
  • 23.59.54: Железная металлургия; первая Ассирийская империя; Израильское царство; основание Карфагена финикийцами
  • 23.59.55: Династия Цинь в Китае; империя Ашоки в Индии; Афины времен Перикла; рождение Будды
  • 23.59.56: Евклидова геометрия; архимедова физика; астрономия Птолемея; Римская империя; “рождение Христа”
  • 23.59.57: Введение нуля и десятичного счета в индийской арифметике; упадок Рима; мусульманские завоевания
  • 23.59.58: Цивилизация майя; династия Сун в Китае; Византийская империя; монгольское нашествие; крестовые походы
  • 23.59.59: Эпоха Возрождения в Европе; путешествия и географические открытия, введение экспериментального метода в науку.
  • Настоящий момент, и первые секунды Нового года: Широкое развитие науки и техники, появление всемирной культуры, создание средств, способных уничтожить род людской, первые шаги в освоении космоса и поиски внеземного разума.

Завершение

В остальных измерениях появляется всё больше плоскостей, которые открывают новые возможности для человека. Только вот пока что постичь их в нашей обыденной жизни невозможно.

Напоследок хочу рекомендовать вам ознакомиться со статьёй, в которой указана информация о том, какие тайны хранит наше подсознание. Её вы найдёте, нажав на эту ссылку.

Познавайте себя, свои возможности и, конечно же, будьте счастливы!

Материал подготовила психолог, гештальт-терапевт, Журавина Алина

Эксперимент «Вселенная 25»: показательный опыт как рай можно превратить в ад

На Земле одна Вера

Секрет закона притяжения и исполнения желаний от самой вселенной

2-й отчет о процессе достижения моих целей, а также мой шок от того как они начали сами ко мне приходить

Как правильно пользоваться законом равновесия вселенной?

Все замедлится, даже самая мысль

Когда-нибудь не останется и черных дыр, но жизнь появится снова

Когда эпоха черных дыр подойдет к концу и даже эти звездные гиганты исчезнут в темноте, в нашей Вселенной останется лишь несколько вещей, в основном диффузные субатомные частицы и оставшиеся атомы позитрония. После этого во Вселенной все будет происходить чрезвычайно медленно, любое событие может длиться эоны. По мнению некоторых теоретических физиков, таких как Фримен Дайсон, в это время во Вселенной может снова появиться жизнь.

Через долгое-долгое время органическая эволюция может начать развиваться из позитрония. Существа, которые появятся, будут очень отличаться от всего, что мы знаем. Например, они могут быть огромными, охватывая межзвездные расстояния. Поскольку во Вселенной ничего больше не останется, им будет где развернуться. Но поскольку эти формы жизни будут огромными, думать они будут намного медленнее нас. На самом деле, на создание даже одной мысли у такого создания могут уйти триллионы лет.

Нам это может показаться странным, но поскольку эти существа будут существовать на огромных временных отрезках, такая мысль будет для них мгновенной. Они будут существовать невероятно долго, наблюдая за тем, как Вселенная пролетает мимо них. Но и они канут в Лету.

Насколько велика Вселенная?

Всякий, кто хоть что-то знает о Вселенной, ответит не задумываясь: «Ужасно велика!» А вот ученые так быстро и определенно ответить не берутся.

Мы привыкли к тому, что у любого объекта есть размер. Иногда его не так легко определить, но он есть. Есть размер у атома, живой клетки, человека, Земли, любой планеты, Солнечной системы. Мы можем заглянуть в справочники и найти все эти цифры. Но, открывая справочник на слове «Вселенная», видим, к удивлению, что ее размер не указан. Это потому, что Вселенная — объект, который не укладывается в обычные житейские представления. Но люди об этом обычно не задумываются. Чаще под влиянием фантастов и околонаучных энтузиастов интереснее поразмышлять об иных мирах и пришельцах из них. А между тем в последние десятилетия ученые наблюдают настоящую революцию в понимании устройства Вселенной. Это гораздо более крупное изменение представлений о строении окружающего нас мира, чем осознание человечеством того, что Земля — это шар.

Еще несколько десятков лет назад Вселенную считали бесконечной. Так думали потому, что нигде не заметно никаких признаков ее границ. Например, в наши дни через телескопы можно рассмотреть объекты, находящиеся на расстоянии 28 млрд световых лет, но границ так и не видно.

Ученые считают, что юная Вселенная была плотным сгустком вещества с высокой температурой и давлением, которое расширялось с момента Большого взрыва до наших дней и продолжает расширяться

Однако эти взгляды пришлось изменить, когда в 1929 году 40-летний американский астроном Эдвин Хаббл открыл, что галактики удаляются друг от друга со скоростью, пропорциональной расстоянию между ними. Из теоретических работ Альберта Эйнштейна и советского физика Александра Фридмана следовало, что Вселенная должна изменяться во времени. Таким образом, открытие Хаббла способствовало перевороту в науке: вместо вечной и неизменной мы получили расширяющуюся, эволюционирующую Вселенную, возникшую миллиарды лет назад.

Новые представления породили новые идеи и исследования. Их результаты привели к модели образования Вселенной в результате Большого взрыва, который произошел, по разным оценкам, от 13 до 17 млрд лет назад. С этого момента начало существовать и отсчитываться время. В результате взрыва образовались частицы, из них — вещество, а из него уже формировались звезды и планеты.

В нынешнем состоянии Вселенная по форме похожа на футбольный мяч, состоящий из 12 пятиугольников, плотно подогнанных друг к другу. Внутри него находятся все известные нам объекты, включая нас самих. Диаметр «мяча» составляет, по разным оценкам, от 60 до 80 млрд световых лет. (Световой год — это расстояние, которое свет проходит за год. Это примерно 10 000 млрд километров.) Считается, что «мяч» еще какое-то время будет расширяться, а потом начнется обратный процесс, так что общий цикл от начала до конца займет около 40 млрд световых лет.

Ученые полагают, что звезды и другие объекты Вселенной продолжают отдаляться друг от друга, двигаясь благодаря силе, которую придал им Большой взрыв

Некоторые модели, с помощью которых описываются процессы возникновения и эволюции Вселенной, предполагают, что вселенные могут возникать при высокоэнергетическом взаимодействии элементарных частиц. В этих моделях макромир и микромир оказываются взаимосвязанными. Из этого следует, что вселенных может быть много.

Конечно, и из-за гигантских отрезков времени, и из-за дистанций это никак не затрагивает нашу жизнь. Но это формирует наши представления об окружающем мире. И восхищает то, что люди на уютной планете Земля за свою короткую по космическим масштабам жизнь и историю своим разумом, страстью и упорством проникают в такие удивительные тайны мироздания. Этим можно гордиться.

Определение возраста Земли

Принцип радиоизотопного датирования по углероду. Так определяют возраст ископаемых останков живых существ на Земле.

С середины XVIII века люди начали направленно изучать возраст Земли. Согласно известным физическим моделям ученый из Франции Жорж-Луи Леклерк де Бюффон оценил время, которое потребовалось бы для понижения температуры Земли с момента ее образования до той, которую имеет она сегодня (от 75 до 168 тыс. лет). Как утверждает физическая модель Земли, изначально она представлялась раскаленным шаром. В 1895-м году инженер из Ирландии — Джон Перри пересчитал эту цифру и получил 2–3 млрд лет. В 1896-м году Антуан Беккерель открыл радиоактивность, а спустя 9 лет британский физик Эрнест Резерфорд предложил метод оценки возраста земных пород при помощи радиоактивного распада.

Идея заключалась в том, чтобы определить, какая часть радиоактивного изотопа успела распасться, используя известные периоды полураспада, вычислить возраст образца. Основы радиоизотопного датирования разработал американский радиохимик Бертрам Болтвуд. При помощи данного метода в 1920-х годах было выявлено, что возраст некоторых минералов около 2-х миллиардов лет! Очевидно, возраст Земли не может превышать возраст самого мироздания, поэтому это открытие подвигло ученых найти действенный метод подсчета возраста Вселенной.

Сегодня считается, что с момента зарождения Земли как планеты прошло 4,54 ± 0,05 млрд лет.

Как доказать существование параллельных миров

Одна их теорий гласит, что параллельные миры существуют. Да, вот так просто. Если верить этой теории, впервые предложенной американским физиком Хью Эверетом, существует, как минимум, один мир, параллельный нашему.

Он назвал свои рассуждения теорией о вероятном множестве миров. Она опирается на заявления ученых из области квантовой физики. Согласно этим заявлениям, электрон может существовать в двух местах пространства одновременно. Такое его свойство называется суперпозицией двух состояний.

Интересной особенностью этой суперпозиции является то, что как только мы попробуем понять, где находится этот электрон, например, окажем на него воздействие, он сразу переместится. При этом хоть они и являются копией друг друга, но если попытаться определить их положение, то окажется, что мы увидим только один. На самом деле, все это больше похоже на какой-то развод, мол вы не видите, но он есть, однако это является частью квантовой физики. Той частью квантовой физики, которая имеет ряд допущений и основных правил, без которых просто невозможно объяснить все происходящее в мире. Такие правила подходят ко многим явлениям, поэтому они и являются законами квантовой физики. Нам остается только поверить в них.

Теория Хью Эверета берет за основу доказательства существования параллельных миров именно такое поведение квантовых частиц. То есть, если мы попробуем идентифицировать электрон в пространстве и понять, где он находится, то сами станем квантовым объектом и окажемся в двух состояниях. В одном из них нам будет доступен один электрон, а во втором — другой. То есть это и есть параллельные миры, основанные на суперпозиции состояний.

Хью Эверет

Так же и со знаменитым котом Шредингера, которого, согласно гипотетическому эксперименту, погружали в ящик с ядом и он был жив и мертв одновременно. Просто когда мы открывали ящик и видели бедного кота в одном состоянии, в параллельном мире кто-то видел его в другом состоянии

Это и есть еще одно важное правило параллельных миров — в них происходят противоположные события

При этом количество таких миров может быть больше двух. Ограничено оно только количество вероятных исходов какого-либо события. Но говорить, что события происходят в другой Вселенной, которая просто связана с нашей на квантовом уровне, не приходится. Согласно теории, Вселенная всего одна, а приведенные примеры параллельных миров являются только слоями этой единой Вселенной, которые образуются каждый раз, когда происходит какое-то событие, имеющее несколько разных исходов.

То, что мы не создаем отдельную Вселенную, объясняет, почему мы не можем попасть в параллельные миры. Мы не можем перейти на другой слой. Там есть другие мы, которые принимают противоположные решения и идут своим путем. Для них наш мир параллельный.

Готовы ли вы к посещению параллельных миров? Нет, ведь это не возможно.

В реальности такая теория просто увязывает квантовые понятия о суперпозициях с реальным миром и пытается на основании этого объяснить существование параллельных миров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector