Астероид, виды и названия, их отличия от метеоритов и других тел

Изучение астероидов

Изучение астероидов началось после открытия в 1781 году Уильямом Гершелем планеты Уран. Его среднее гелиоцентрическое расстояние оказалось соответствующим правилу Тициуса — Боде.

В конце XVIII века Франц Ксавер организовал группу из 24 астрономов. С 1789 года эта группа занималась поисками планеты, которая, согласно правилу Тициуса-Боде, должна была находиться на расстоянии около 2,8 астрономических единиц от Солнца — между орбитами Марса и Юпитера. Задача состояла в описании координат всех звёзд в области зодиакальных созвездий на определённый момент. В последующие ночи координаты проверялись, и выделялись объекты, которые смещались на большее расстояние. Предполагаемое смещение искомой планеты должно было составлять около 30 угловых секунд в час, что должно было быть легко замечено.

По иронии судьбы первый астероид, Церера, был обнаружен итальянцем Пиацци, не участвовавшим в этом проекте, случайно, в 1801 году, в первую же ночь столетия. Три других — (2) Паллада, (3) Юнона и (4) Веста были обнаружены в последующие несколько лет — последний, Веста, в 1807 году. Ещё через 8 лет бесплодных поисков большинство астрономов решило, что там больше ничего нет, и прекратило исследования.

Однако Карл Людвиг Хенке проявил настойчивость, и в 1830 году возобновил поиск новых астероидов. Пятнадцать лет спустя он обнаружил Астрею, первый новый астероид за 38 лет. Он также обнаружил Гебу менее чем через два года. После этого другие астрономы подключились к поискам, и далее обнаруживалось не менее одного нового астероида в год (за исключением 1945 года).

В 1891 году Макс Вольф впервые использовал для поиска астероидов метод астрофотографии, при котором на фотографиях с длинным периодом экспонирования астероиды оставляли короткие светлые линии. Этот метод значительно ускорил обнаружение новых астероидов по сравнению с ранее использовавшимися методами визуального наблюдения: Макс Вольф в одиночку обнаружил 248 астероидов, начиная с (323) Брюсия, тогда как до него было обнаружено немногим более 300. Сейчас, век спустя, 385 тысяч астероидов имеют официальный номер, а 18 тысяч из них — ещё и имя.

В 2010 г. две независимые группы астрономов из США, Испании и Бразилии заявили, что одновременно обнаружили водяной лёд на поверхности одного из самых крупных астероидов главного пояса — Фемиды. Это открытие позволяет понять происхождение воды на Земле. В начале своего существования Земля была слишком горяча, чтобы удержать достаточное количество воды. Это вещество должно было прибыть позднее. Предполагалось, что воду на Землю могли занести кометы, но изотопный состав земной воды и воды в кометах не совпадает. Поэтому можно предположить, что вода на Землю была занесена при её столкновении с астероидами. Исследователи также обнаружили на Фемиде сложные углеводороды, в том числе молекулы — предшественники жизни.

Как были открыты первые астероиды

В самом начале ХІХ века на о. Сицилия в Палермо ученый-астроном из Италии Пиацци Джузеппе уже долгое время пытался составить каталог звезд, наблюдая их положение. И вот уже он заканчивал свою удивительную работу.

Первого января 1801 года астроном увидел в созвездии, именуемом «Близнецы», одну маленькую, еле заметную звезду, которую по неведомой причине он не вносил в свой каталог. Следующим вечером Джузеппе снова решил посмотреть на эту звездочку, но оказалось, что она поменяла свое местоположение на 4′ за прямым восхождением и приблизительно на 3′,5 за склонением. Сначала Пиацци подумал, что он ошибается, но следующая ночь доказала, что эта маленькая звезда все же медленно двигается по небу.

Астроном следил за этими перемещениями около шести недель, но наблюдения прервала его болезнь. Когда же Джузеппе преодолел болезнь и собрался снова изучать эту звезду, то уже не смог найти ее на небе. Позже эта новая планета получила название Церера. Современные данные указывают, что она – наибольший астероид из главного пояса астероидов, 970х930 километров размером, причем ещё и первый астероид открытый человечеством.

Между тем, еще один ученый Карл Гаусс создавал методы для возможности обрабатывать наблюдения в астрономии. Карл Фридрих определил, что между орбитами Юпитера и Марса находится орбита новой планеты. Ее полуось была приблизительно 2,8 а.е.. Именно эту планету астронавты пытались найти с тех времен, когда была обнаружена зависимость, определяющая закономерности в расположении планет на определенном расстоянии от Солнца. Эта зависимость носила название закона Тициуса-Боде.

Уже долгие годы эта маленькая планета скрывалась и пряталась от глаз ученых. Позже она стала называться Фаэтон. По сравнению с Церерой она была слишком маленькой.

В 1802 году, а точнее 28 марта, была обнаружена возле Цереры еще одна слабая планетка – Паллада. Ее неожиданно обнаружил Генрих Ольбрес. Так вот эта удивительная тезка Афины Паллады расположилась также на этом расстоянии от Солнца – 2,8 а.е.

На 1860 год на этом расстоянии было обнаружено 62 астероида. Через двадцать лет результаты превысили все ожидания – 211 астероидов. И с каждым годом таких находок становилось все больше.

ФИЗИКА

§ 65. Малые тела солнечной системы

Помимо больших планет и планет-карликов вокруг Солнца движется более четырёхсот тысяч малых небесных тел размером от километра и более, называемых астероидами, что в переводе с греческого означает «звездоподобные». Отличить астероиды от звёзд можно только по их движению на фоне звёздного неба. Совокупность обращающихся вокруг Солнца астероидов, орбиты которых пролегают в основном в пространстве между орбитами Марса и Юпитера, принято называть Главным поясом астероидов.

Вокруг Солнца также обращаются по вытянутым эллиптическим орбитам кометы и метеорные тела (называемые также метеороидами), т. е. твёрдые тела различных размеров — от песчинки до мелкого астероида. Астероиды, кометы и метеорные тела называются малыми телами Солнечной системы.

Кометы представляют собой большие образования из разреженного газа с очень маленьким твёрдым ядром. Ядро состоит из льдов: водного (более 80%), метанового, аммиачного, углекислого и др. Кометный лёд перемешан с пылью и каменистым веществом.

Вдали от Солнца при температуре порядка -260 °С комета не имеет ни головы, ни хвоста. При приближении к Солнцу на такое расстояние, при котором температура кометы повышается до -140 °С, льды начинают испаряться, образуя прозрачную атмосферу — голову кометы (рис. 184).

Рис. 184. Комета Холмса, открыта 6 ноября 1892 г.

При испарении льдов на поверхности ядра остаётся корка, состоящая из пыли и других частиц.

Кванты солнечного света, налетая на голову кометы, ионизируют молекулы газов. Солнечный ветер, действуя своим магнитным полем на ионы, уносит их от Солнца со скоростью 500—1000 км/с, в результате чего у кометы образуется длинный и прямой плазменный хвост.

Солнечный свет (поток световых квантов) оказывает давление на пылинки, благодаря чему у кометы образуется второй хвост — пылевой. Поскольку световое давление сравнительно невелико, пыль покидает голову кометы довольно медленно и, следуя за ней по криволинейной траектории, принимает изогнутую форму (рис. 185).

Рис. 185. Схема образования двух типов хвостов кометы

Название «комета» происходит от греческого слова kometes, т.е. «длинноволосый». Вероятно, такое название было дано благодаря наличию головы и развевающегося за ней хвоста.

При подходе кометы близко к Солнцу (например, при её движении внутри земной орбиты), из-за сильного разогрева газ и пыль вырываются из ядра непрерывно и с такой большой скоростью, что его масса может уменьшаться на 30—40 т в секунду. Помимо этого в комете могут происходить взрывы, приводящие к разрушению ядра.

Остатки распавшегося кометного ядра, названные метеорными телами, могут растянуться вдоль орбиты кометы на большое расстояние. Если Земля проходит сквозь их скопление, они, влетая в её атмосферу со скоростью 11 км/с, испаряются на высоте в несколько десятков километров. Иногда кажется, что метеоры вылетают из какой-либо области небесной сферы (рис. 186). Область небесной сферы, кажущаяся источником метеоров, называется радиантом.

Рис. 186. Явление метеора

Если из межпланетного пространства в атмосферу проникает крупное железное или каменное метеорное тело, например обломок астероида массой в несколько килограммов, то в большинстве случаев оно не успевает разрушиться в атмосфере и падает на землю. Такое тело называется метеоритом.

Бывает, что крупное метеорное тело на большой скорости проникает в нижние слои атмосферы. От трения о воздух оно сильно нагревается, и у него появляется оболочка из раскалённых газов и частиц. Выглядит это как летящий по небу большой огненный шар, оставляющий позади себя яркий след. Такое явление называется болидом, (рис. 187).

Рис. 187. Болид над Латвией

Зелёная Аспорина

Оливин — минерал, распространённый на многих небесных телах. Обычно его цвет светло-зелёный, хотя иногда встречаются и желтоватые камни. На Гавайских островах есть целые пляжи, состоящие из песчинок оливина. Но все пляжи меркнут перед 60-километровым астероидом Аспорина, который либо покрыт им полностью, либо является его огромным фрагментом. И если Психею называют драгоценным астероидом, то Аспорину величают зелёным. Располагайся он на расстоянии в 100000 километров от нашей планеты, мы бы наблюдали в небе яркую зелёную звезду, но, увы, астероид удалён от нас на 400000000 километров, и всё, что мы можем увидеть, это белая точка на фоне тёмного космоса.

Пояс Койпера:

Пояс Койпера – следующее по значимости скопление астероидов, находящееся в непосредственной близости от орбиты планеты Нептун. Хотя число самих небесных тел в нем меньше, площадь, им занимаемая, в два десятка раз больше, чем у Главного пояса, т.к. расстояние между объектами еще больше, чем в первом случае. Еще одно отличие – состав: в Главном поясе они преимущественно включают руду и скалистые породы, а в поясе Койпера – летучие вещества, представленные в виде ледяных масс. Наиболее распространенные – аммиак и метан.

Крупнейшими объектами сосредоточения небесных тел являются карликовые планеты:

– Плутон;

– Хаумеа;

– Макемаке;

– Эрида.

Классификация по орбитам

Астероиды классифицируются по таким признакам как видимый спектр отражения солнечного света и характеристики орбит.

Семейство астероидов Ефросины в инфракрасном спектре

Согласно характеристикам орбит астероиды объединяют в группы, среди которых могут выделять семейства. Группой астероидов считается некоторое число таких тел, характеристики орбит которых схожи, то бишь: полуось, эксцентриситет и орбитальный наклон. Семейством астероидов следует считать группу астероидов, которые не просто движутся по близким орбитам, но вероятно являются фрагментами одного большого тела, и образованы в результате его раскола.

Наиболее крупные из известных семей могут насчитывать несколько сотен астероидов, наиболее компактные же – в пределах десяти. Примерно 34% тел главного пояса астероидов являются членами семей астероидов.

В результате образования большинства групп астероидов Солнечной системы, их родительское тело было уничтожено, однако встречаются и такие группы, родительское тело которых уцелело (например Веста).

Размеры астероида Веста и карликовой планеты Церера

§ 65. Малые тела Солнечной системы

Помимо больших планет и планет-карликов вокруг Солнца движется более четырёхсот тысяч малых небесных тел размером от километра и более, называемых астероидами, что в переводе с греческого означает «звездоподобные». Отличить астероиды от звёзд можно только по их движению на фоне звёздного неба. Совокупность обращающихся вокруг Солнца астероидов, орбиты которых пролегают в основном в пространстве между орбитами Марса и Юпитера, принято называть Главным поясом астероидов.

Вокруг Солнца также обращаются по вытянутым эллиптическим орбитам кометы и метеорные тела (называемые также метеороидами), т. е. твёрдые тела различных размеров — от песчинки до мелкого астероида. Астероиды, кометы и метеорные тела называются малыми телами Солнечной системы.

Кометы представляют собой большие образования из разреженного газа с очень маленьким твёрдым ядром. Ядро состоит из льдов: водного (более 80%), метанового, аммиачного, углекислого и др. Кометный лёд перемешан с пылью и каменистым веществом.

Вдали от Солнца при температуре порядка -260 °C комета не имеет ни головы, ни хвоста. При приближении к Солнцу на такое расстояние, при котором температура кометы повышается до -140 °C, льды начинают испаряться, образуя прозрачную атмосферу — голову кометы (рис. 184).


Рис. 184. Комета Холмса, открыта 6 ноября 1892 г.

При испарении льдов на поверхности ядра остаётся корка, состоящая из пыли и других частиц.

Кванты солнечного света, налетая на голову кометы, ионизируют молекулы газов. Солнечный ветер, действуя своим магнитным полем на ионы, уносит их от Солнца со скоростью 500—1000 км/с, в результате чего у кометы образуется длинный и прямой плазменный хвост.

Солнечный свет (поток световых квантов) оказывает давление на пылинки, благодаря чему у кометы образуется второй хвост — пылевой. Поскольку световое давление сравнительно невелико, пыль покидает голову кометы довольно медленно и, следуя за ней по криволинейной траектории, принимает изогнутую форму (рис. 185).


Рис. 185. Схема образования двух типов хвостов кометы

Название «комета» происходит от греческого слова kometes, т. е. «длинноволосый». Вероятно, такое название было дано благодаря наличию головы и развевающегося за ней хвоста.

При подходе кометы близко к Солнцу (например, при её движении внутри земной орбиты), из-за сильного разогрева газ и пыль вырываются из ядра непрерывно и с такой большой скоростью, что его масса может уменьшаться на 30—40 т в секунду. Помимо этого в комете могут происходить взрывы, приводящие к разрушению ядра.

Остатки распавшегося кометного ядра, названные метеорными телами, могут растянуться вдоль орбиты кометы на большое расстояние. Если Земля проходит сквозь их скопление, они, влетая в её атмосферу со скоростью 11 км/с, испаряются на высоте в несколько десятков километров. Иногда кажется, что метеоры вылетают из какой-либо области небесной сферы (рис. 186). Область небесной сферы, кажущаяся источником метеоров, называется радиантом.


Рис. 186. Явление метеора

Если из межпланетного пространства в атмосферу проникает крупное железное или каменное метеорное тело, например обломок астероида массой в несколько килограммов, то в большинстве случаев оно не успевает разрушиться в атмосфере и падает на землю. Такое тело называется метеоритом.

Бывает, что крупное метеорное тело на большой скорости проникает в нижние слои атмосферы. От трения о воздух оно сильно нагревается, и у него появляется оболочка из раскалённых газов и частиц. Выглядит это как летящий по небу большой огненный шар, оставляющий позади себя яркий след. Такое явление называется болидом (рис. 187).


Рис. 187. Болид над Латвией

Вопросы:

1. Что называется астероидом?

2. Что вы знаете о кометах?

3. Что называется явлением метеора?

4. Что такое метеорит?

Предыдущая страницаСледующая страница

Классификационные особенности

Есть несколько вариантов, по которым можно систематизировать список астероидов.

Семейства и группы

Для такого объекта, как астероид, характерно подразделение на отдельные категории и семейства. Определение их происходит в соответствии с орбитами и характеристиками. Традиционно всей группе даётся название на базе имени первого обнаруженного объекта. Под группами принято понимать свободные образования, в то время как семейства являются максимально плотными.

Классы спектральные

После того как было дано определение «астероид», это позволило поделить объекты на специальные спектральные классы. А в 1975 году произошла разработка целой системы классификации тел, которая базируется на следующих параметрах:

  • цветовые характеристики;
  • уровень альбедо;
  • параметры отражённого солнечного света.

Изначально любой астероид мог относиться исключительно к одной из трёх групп:

  • класс C (углеродный тип), к нему относится 75% действующих тел;
  • класс S (силикатный тип), включает 17% известных космических объектов;
  • класс M (металлический тип), содержит остальные элементы.

Впоследствии каждый астероид можно было отнести к большему количеству групп:

  • A – имеет высокий уровень альбедо и красноватый тон;
  • B – волны практически не поглощаются, а спектр является голубоватым;
  • D – отличаются низким показателем альбедо и ровным спектром;
  • E – представители категории имеют сходство с ахондритами;
  • F – есть сходства с группой B, однако водные следы отсутствуют;
  • G – для них характерен невысокий уровень альбедо и плоский диапазон;
  • P – маленькое альбедо и красноватый спектр;
  • Q – наличие широких следов пироксена и оливина;
  • R – высокое значение альбедо и красноватый тон спектра;
  • T – низкий показатель альбедо и красноватый оттенок спектра;
  • V – умеренная яркость и близость к классу S;
  • J – низкое альбедо и образование из тел Весты.

Каждый астероид может быть отнесён к той или иной категории. На основании приведённой классификации можно также дать определение астероид. Это объект небольшого размера и массы, имеющий спутники.

В концепции этого художника астронавт выполняет маневр привязывания на астероиде. Космический разведывательный аппарат (SEV) находится рядом, а многоцелевой экипаж Orion (MPCV) пристыкован к среде обитания на заднем плане.

Размерные характеристики

Особого внимания заслуживают размеры астероидов. Дело в том, что их число значительно уменьшается по мере возрастания «габаритов», что на 100% соответствует степенному закону. Наибольшее количество астероидов имеет диаметр от 100 метров. Чуть меньшее их число обладает диаметральным сечением от 300 м, а на третьем месте – тела от 500 м, число которых составляет 2 000 000 единиц.
Далее следуют объекты от 1, 3, 5 км, их количество соответственно составляет 750, 200, 90 тысяч единиц. Наименее численные группы астероидов имеют диаметральное сечение в:

— 10 (от 10 000 единиц),

— 30 (1 100 штук),

— 50 (600 элементов),

— 100 (200 шт.),

— 200 (30 ед.),

— 300 (5 шт.),

— 500 (3 объекта),

— 900 (всего один объект) километров.

Определение формы и размеров астероида

Астероид (951) Гаспра. Одно из первых изображений астероида, полученных с космического аппарата. Передано космическим зондом «Галилео» во время его пролёта мимо Гаспры в 1991 году (цвета усилены)

Современные способы определения размеров астероидов включают в себя методы поляриметрии, радиолокационный, спекл-интерферометрии, транзитный и тепловой радиометрии.

Одним из наиболее простых и качественных является транзитный метод. Во время движения астероида относительно Земли он иногда проходит на фоне отдалённой звезды, это явление называется покрытие звёзд астероидом. Измерив длительность снижения яркости данной звезды и зная расстояние до астероида, можно достаточно точно определить его размер. Данный метод позволяет достаточно точно определять размеры крупных астероидов, вроде Паллады.

Метод поляриметрии заключается в определении размера на основании яркости астероида. Чем больше астероид, тем больше солнечного света он отражает. Однако яркость астероида сильно зависит от альбедо поверхности астероида, что в свою очередь определяется составом слагающих его пород. Например, астероид Веста из-за высокого альбедо своей поверхности отражает в 4 раза больше света, чем Церера и является самым заметным астероидом на небе, который иногда можно наблюдать невооружённым глазом.

Однако само альбедо тоже можно определить достаточно легко. Дело в том, что чем меньше яркость астероида, то есть чем меньше он отражает солнечной радиации в видимом диапазоне, тем больше он её поглощает и, нагреваясь, излучает её затем в виде тепла в инфракрасном диапазоне.

Метод поляриметрии может быть также использован для определения формы астероида, путём регистрации изменения его блеска в процессе вращения, так и для определения периода этого вращения, а также для выявления крупных структур на поверхности. Кроме того, результаты, полученные с помощью инфракрасных телескопов, используются для определения размеров методом тепловой радиометрии.

Изучение пояса Астероидов

Астероиды рассредоточены в пространстве, поэтому аппараты путешествуют по поясу астероидов между Марсом и Юпитером без повреждений. Вероятность столкновения: 1 к миллиарду.

Космический корабль Dawn прибывает к астероиду Веста

В 1972 году Пионер-10 стал первым аппаратом, пролетевшим сквозь астероидный пояс на пути к Юпитеру. На тот момент боялись, что осколки могут повредить корабль. Но он, вместе с 11-й миссией, прошел успешно. Далее были Вояджеры-1 и 2, Уллис, Галилео, NEAR, Кассини, Звездная Пыль, Новые Горизонты, Розетта и Dawn.

По большей части эти миссии предназначались для исследования внешней системы и ее объектов. Конкретно за астероидами следили Dawn, NEAR и Хаябуса. Dawn полетел к Веста в 2011-2012 гг. и потом направился к Церере.

В будущем рассматривают возможность использовать астероиды как ресурсы – драгоценные металлы, материалы и летучие вещества. Некоторые даже строят планы по колонизации крупных объектов.

Ссылки

Объекты Солнечной системы
Карликовые планеты Плутон · Церера · Хаумеа · Макемаке · Эрида
Планеты Земной группы Меркурий · Венера · Земля · Марс
Газовые гиганты Юпитер · Сатурн · Уран · Нептун
Другие объекты Солнце · Астероиды · Пояс астероидов· Кометы· Метеоры и метеориты· Пояс Койпера и Облако Оорта· За пределами Солнечной системы

Чем отличается метеорит от астероида?

Небесные тела не отличаются большим разнообразием, но при изменении их положения в пространстве солнечной системы они меняют свои свойства, от чего получают другое название.

Так, астероидов, размеры которых достигают сотен километров в диаметре, не очень много, но сам пояс этих объектов (астероиды «стремятся объединяться») включает более 750 тысяч более мелких, средних и даже совсем маленьких небесных тел. Все они двигаются по определенной орбите, но в результате различных сил и процессов иногда «срываются» с нее и движутся в космическом пространстве. Если один из таких астероидов проникнет в атмосферу Земли, он станет метеором.

Чтобы достичь поверхности планеты метеору придется столкнуться с несколькими слоями атмосферы, где его тело будет подвергнуто различным химическим и физическим процессам, проще говоря – «сгорит». В случае, когда какая-то часть метеора все же останется целой и упадет на Землю, она станет метеоритом. Чаще всего это ядро бывшего астероида, состоящее преимущественно из железа (около 90%) или минералов – кремния, магния и прочих. Огненный шар, образующийся при взрыве и горении метеора в атмосфере, называют болидом.

Понятие астероида:

Солнечная система состоит не только из восьми планет, но и множества других твердых тел, называемых малыми. Это кометы, карликовые планеты, кентавры, дамоклоиды и прочие, состоящие из самых разных химических элементов. Одни из них имеют собственные орбиты, по которым вращаются вокруг Солнца, другие находятся в космическом пространстве в «свободном полете»

 Особое внимание ученые уделяют астероидам – телам, до недавнего времени приравненных к планетам, не имеющим собственной атмосферы, но часто владеющих спутниками. Чем же вызван подобный интерес и в чем принципиальное их отличие от других космических тел?

Астероид – одна из разновидностей тел, присутствующих в Солнечной системе. Его название происходит от объединения двух древнегреческих слов, означающих «звезда» и «вид, наружность» и в прямом переводе означает «похожий на звезду». В этом легко убедиться, если посмотреть на него в телескоп: тело яркое, светящееся, неровное, тогда как известные планеты представляют собой матовый диск.

Размеры астероидов различны, большая часть из них достаточно крупная, от 30 метров в диаметре (тела меньших размеров причислены к метеороидам), поэтому долгое время, вплоть до 2006 года, их считали малыми планетами. Сегодня же, согласно классификации Международного астрономического союза, астероиды – это малые небесные тела Солнечной системы, которые:

– имеют собственную орбиту;

– отличаются неправильной геометрической формой;

– не содержат атмосферы;

– могут обладать спутниками.

Список самых больших астероидов

1 Церера

Джузеппе Пиацци обнаружил Цереру в 1801 году, но поначалу её посчитали восьмой планетой. Тогда не были обнаружены Нептун и Плутон. Это первый найденный астероид. Церера до сих пор остаётся самым большим астероидом на сегодняшний день с его полярным диаметром в 909 км. Это единственный астероид, считающийся карликовой планетой, хотя очень и очень маленькой. Её форма предполагает, что её развитый рельеф похож на земной. Церера, возможно, имеет большие запасы водяного льда под корой, потому что её плотность довольно низкая.

Вполне возможно, что Церера может иметь больше воды, чем все запасы пресной воды на Земле. Церера содержит в себе почти треть массы всего Пояса астероидов. Планетарные астрономы в целом считают, что Церера эволюционировала как протопланета в первые дни формирования Солнечной системы, но перестала сливаться с другими протопланетами, как это сделала Земля. Её орбита вокруг Солнца равна примерно 2.5468 астрономическим единицам. Ей понадобиться 4,6 года, чтобы сделать полный оборот вокруг Солнца.

4 Веста

Весту открыли после Цереры в 1807 году. Она является вторым по величине и вторым по весу астероидом. Её тело имеет удлинённую форму: 580 км на 460 км. Масса составляет около 9% от общей массы астероидов главного Пояса. В последние миллиарды лет Веста потерпела катастрофические столкновения. Они оставили кратер на её южном полюсе, размер которого примерно имеет 460 км в поперечнике. Было выброшено около 1% всей ее массы в пространстве. Остальные фрагменты, которых в общей сложности насчитывают около 235 штук, вместе с самой Вестой образуют группу астероидов Веста. Некоторые фрагменты считаются источником метеоритов. Многие из них нашли свой путь к Земле. Её эксцентричная орбита находится на расстоянии от 2.151 до 2.572 астрономических единиц от Солнца. Ей потребуется 3,63 лет для полного оборота вокруг Солнца.

2 Паллада

Паллада была обнаружена в 1802 году. Её диаметр, который варьируется от 580 до 500 км (средний 544 км), и делает её сравнимым по размерам с Вестой, но Паллада существенно легче — около 7% от всей массы астероидов. Её эксцентричная орбита вокруг Солнца колеблется от 2.132 до 3.412 астрономических единиц. Объект существенно отклонён от плоскости главного Пояса астероидов почти на 35°.

10 Гигея

Гигею обнаружили в 1849 году. Она является четвертой по величине среди астероидов, её тело также имеет удлиненную форму: 530 х 407 х 370 км (в среднем 431 км). Орбита расположена на расстоянии от 2,77 до 3.507 астрономических единиц. Гигея совершает полный оборот вокруг Солнца каждые 5,56 лет. Это самый большой астероид в семье Гигея, так как составляет 90% от всей семейной массы.

704 Интерамния

Интерамния размером примерно 350,3 на 303,6 км со средним диаметром 326 км. Она составляет примерно 1,2% общей массы астероидов в главное Поясе. Её орбита умеренно эксцентрична и колеблется от 2.601 до 3.522 астрономических единиц. Полный оборот вокруг Солнца Интерамния совершает каждые 5,36 лет.

511 Давида

Давида представляет собой удлиненный астероид размером 357 х 294 х 231 км. Её орбита умеренно эксцентрична и колеблется от 2,58 до 3.754 астрономических единиц. Полный оборот вокруг Солнца 511 Давида совершает за 5,64 года. Считается, что существует массивный кратер на её поверхности, размер которого составляет около 150 км в диаметре.

87 Сильвия

Сильвия имеет очень низкую плотность и удлинённую форму примерно 384 х 262 х 232 км. Её орбита умеренно эксцентрична и колеблется от 3.213 до 3.768 астрономических единиц. На полный оборот вокруг Солнца 87 Сильвии требуется около 6,52 лет. Астероид имеет два маленьких спутника, называемых Ромул и Рем. Ромул имеет около 18 км в диаметре и находится на расстоянии 1356 км от астероида, полный оборот совершает каждые 87.59 часы. Ремус имеет 7 км в диаметре и находится на расстоянии 706 км, полный оборот вокруг астероида совершает за 33.09 часа.

65 Кибела

Астероид Кибела имеет размер около 302 х 290 х 232 км. Её орбита умеренно эксцентрична и колеблется от 3.073 до 3.794 астрономических единиц.  Полной оборот вокруг Солнца 65 Кибелы совершает каждые 6,36 года.

15 Эвномия

Эвномия представляет собой удлиненный астероид размером около 357 х 255 х 212 км. Её орбита умеренно эксцентрична и колеблется от 2.149 до 33.138 астрономических единиц. Полный оборот вокруг Солнца Эвномии  совершает каждые 4,3 года.

Типы астероидов

  • Троянские астероиды;
  • Кентавры;
  • Околоземные астероиды;

Факты

  • Интересные факты об астероидах;
  • Классы астероидов;
  • Орбита астероидов;
  • Чем отличается астероид от кометы;
  • Самые большие астероиды;
  • Самый большой астероид в Солнечной системе;
  • Астероид Апофис;
  • Кратеры на Земле;
  • Астероид, убивший динозавров;

Взаимодействие с Землей

изображение падения на Землю

Подсчитано, что для
полного уничтожения человеческой цивилизации и глобальных изменений атмосферы и
климата, Земле надо столкнуться с астероидом диаметром всего 3 км.  Крупнейшим ударным кратером на планете
является южноафриканский кратер Вредефорт, чей диаметр составляет 300 км. Он
образовался 2 млрд. лет назад при столкновении Земли с малым небесным телом, не
превышающим 10 км.

Потенциально опасными для
нашей планеты считаются те объекты главного астероидного пояса, которые могут
приблизиться к ней на расстоянии менее 7,5 млн. км. Опасность астероида
оценивают по Туринской шкале от 0 до 10. Нулевая отметка означает крайне низкую
вероятность столкновения и отсутствие ущерба при попадании в атмосферу планеты.
Астероиды, имеющие 10 баллов, неизбежно столкнутся с Землей и вызовут
глобальную катастрофу, ведущую к гибели человечества.

По состоянию на июнь 2018 года все астероиды главного пояса имеют оценку не выше 0 по Туринской шкале. Ранее представляющими некоторую угрозу считались Апофис (4 балла) и  (144898) 2004 VD17 (2 балла), но и их показатели снизились до нуля.

В 21 веке наиболее близко
к Земле приближались:

  • 2008 TS26 – пролетел над
    планетой на расстоянии 6 тыс. км 9 октября 2008;
  • 2004 FU162 – приблизился до
    6530 км 31 марта 2004 года;
  • 2009 VA – 14 тыс. км 6 ноября 2009 года.

Некоторые астероиды Солнечной системы достигали атмосферы Земли, но они были настолько незначительных размеров, что разрывались, не достигая поверхности планеты, оставляя лишь мелкие обломки.

В феврале 2013 года
астероид размерами около 17 м и весом до 10*106 кг вошел в атмосферу
нашей планеты. Он разорвался на высоте 20 км над Челябинском и окрестностями.
По оценкам разных исследователей мощность взрыва составила от 100 килотонн до
1,5 мегатонн в тротиловом эквиваленте. Сгорание объекта в земной атмосфере
сопровождалось сильной ударной волной, выбившей большое количество стекол в
близлежащих населенных пунктах. Также столкновение астероида с Землей
спровоцировало землетрясение магнитудой в 4 балла в юго-западных районах
Челябинска.

Падение астероида
Челябинск стало самым крупным происшествием такого рода после столкновения
Земли с Тунгусским метеоритом. Произошло это в 1908 году в районе правого
притока реки Енисей.  Мощность взрыва
составила около 40 мегатонн, что спровоцировало массовый вал деревьев в тайге
на площади более 2 тыс. кв. км.

НАСА финансирует
большинство действующих программ, связанных с космической безопасностью и
защитой Земли от астероидов Солнечной системы. Самые крупные проекты «LINEAR» и
«Pan-STARRS», использующие мощнейшие телескопы, отслеживают до десяти тысяч
малых тел ежегодно. Также обнаружения потенциально опасных космических объектов
ведется с околоземной орбиты благодаря малым спутникам, таким как канадский
«NEOSSat». На финансирование данных проектов у НАСА и других космических
агентств уходит сотни миллионов долларов.

Астероиды в прошлом
Земли

Что произойдет, если с Землей столкнется астероид диаметром больше 10 км? Первым катастрофическим событием будет гигантская ударная волна в атмосфере. Далее тело упадет на поверхность планеты, что закончится  либо невиданным землетрясением, либо цунами высотой в несколько сотен метров. Тепловая волна вызовет лесные пожары по всему земному шару, что спровоцирует выброс в атмосферу огромного количества сажи и копоти. Начнется резкое похолодание из-за того, что загрязненная атмосфера не сможет пропускать солнечные лучи в достаточном количестве. Климат на планете необратимо изменится, а многие живые организмы вымрут.

Одно из таких
столкновений произошло 65 млн. лет назад. На полуострове Юкатан в Мексиканском
заливе сохранилось свидетельство этой катастрофы – ударный кратер Чиксулуб
диаметром 180 км. Крупный космический объект размерами около 10 км привел к
полному вымиранию динозавров на нашей планете. Также падением крупного
астероида некоторые исследователи объясняют массовое пермское вымирание живых
организмов, случившееся 250 млн. лет назад.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector