Дозиметр для серёжи. часть ii. «столетние трубки» vs мирный атом

Виды счетчика Гейгера

Устройства представлены в двух вариантах:

  • Цилиндрические. Этот вид производится с использованием металлической гофрированной трубки с тонкими стенками. Рифленая поверхность придает гильзе дополнительный показатель жесткости, чтобы она была максимально устойчива к атмосферному давлению и не деформировалась. Торцы трубки оборудуются изоляторами для создания герметичности. Они сделаны из стекла и пластмассы термореактивного вида. На них расположены выводы для подключения плат прибора. Такой счетчик Гейгера-Мюллера применяется для регистрации как бета, так и гамма лучей.
  • Торцевые или плоские. Этот вид устройства регистрирует еще и на альфа излучение, которое отличается меньшей проходимостью частиц. Конструкция корпуса плоская. В нем есть окно из слюды, обеспечивающее лучшую проходимость частиц.

Счетчиками Гейгера можно просто и быстро найти источник ионизированного излучения и внутри помещений, и на открытой местности. Это довольно дешевые, но надежные и эффективные датчики, поэтому широко используются в таких приборах, как дозиметры. С их помощью можно проверить на радиацию:

  • стройматериалы:
  • одежду;
  • технику;
  • мебель;
  • продукты питания.

Немного об ионизирующих излучениях

Можно было бы сразу перейти к описанию детектора, но его работа покажется непонятной, если вы мало знаете об ионизирующих излучениях. При излучении происходит эндотермическое влияние на вещество. Этому способствует энергия. К примеру, ультрафиолет или радиоволна к таким излучениям не относятся, а вот жесткий ультрафиолетовый свет – вполне. Здесь определяется граница влияния. Вид именуется фотонным, а сами фотоны – это γ-кванты.

Эрнст Резерфорд поделил процессы испускания энергии на 3 вида, используя установку с магнитным полем:

  • γ – фотон;
  • α – ядро атома гелия;
  • β – электрон с высокой энергией.

От частиц α можно защититься бумажным полотном. β проникают глубже. Способность проникновения γ самая высокая. Нейтроны, о которых ученые узнали позже, являются опасными частицами. Они воздействуют на расстоянии нескольких десятков метров. Имея электрическую нейтральность, они не вступают в реакцию с молекулами разных веществ.

Однако нейтроны легко попадают в центр атома, провоцируют его разрушение, из-за чего образуются радиоактивные изотопы. Распадаясь, изотопы создают ионизирующие излучения. От человека, животного, растения или неорганического предмета, получившего облучение, радиация исходит несколько дней.

Принцип действия счётчика Гейгера

По своей конструкции счетчик Гейгера довольно прост. В герметизированный баллон с двумя электродами закачивается газовая смесь, состоящая из неона и аргона, которая легко ионизируется. На электроды подается высокое напряжение (порядка 400В), которое само по себе никаких разрядных явлений не вызывает до того самого момента, пока в газовой среде прибора не начнется процесс ионизации. Появление пришедших извне частиц приводит к тому, что первичные электроны, ускоренные в соответствующем поле, начинают ионизировать иные молекулы газовой среды. В результате под воздействием электрического поля происходит лавинообразное создание новых электронов и ионов, которые резко увеличивают проводимость электронно-ионного облака. В газовой среде счетчика Гейгера происходит разряд. Количество импульсов, возникающих в течение определенного промежутка времени, прямо пропорционально количеству фиксируемых частиц. Таков в общих чертах принцип работы счетчика Гейгера.

Обратный процесс, в результате которого газовая среда возвращается в исходное состояние, происходит сам собой. Под воздействием галогенов (обычно используется бром или хлор) в данной среде происходит интенсивная рекомбинация зарядов. Процесс этот происходит значительно медленнее, а потому время, необходимое для восстановления чувствительности счетчика Гейгера, – очень важная паспортная характеристика прибора.

Несмотря на то что принцип действия счетчика Гейгера довольно прост, он способен реагировать на ионизирующие излучения самых различных видов. Это α-, β-, γ-, а также рентгеновское, нейтронное и ультрафиолетовое излучения. Все зависит от конструкции прибора. Так, входное окно счетчика Гейгера, способного регистрировать α- и мягкое β-излучения, выполняется из слюды толщиной от 3 до 10 микрон. Для обнаружения рентгеновского излучения его изготавливают из бериллия, а ультрафиолетового – из кварца.

Фото счетчика Гейгера

Также рекомендуем просмотреть:

  • Полировка фар своими руками
  • Строительные леса своими руками
  • Точилка для ножей своими руками
  • Антенный усилитель
  • Восстановление аккумулятора
  • Мини паяльник
  • Как сделать электрогитару
  • Оплетка на руль
  • Фонарик своими руками
  • Как заточить нож для мясорубки
  • Электрогенератор своими руками
  • Солнечная батарея своими руками
  • Течет смеситель
  • Как выкрутить сломанный болт
  • Зарядное устройство своими руками
  • Схема металлоискателя
  • Станок для сверления
  • Нарезка пластиковых бутылок
  • Аквариум в стене
  • Врезка в трубу
  • Стеллаж в гараж своими руками
  • Симисторный регулятор мощности
  • Фильтр низких частот
  • Вечный фонарик
  • Нож из напильника
  • Усилитель звука своими руками
  • Трос в оплетке
  • Пескоструйный аппарат своими руками
  • Генератор дыма
  • Ветрогенератор своими руками
  • Акустический выключатель
  • Воскотопка своими руками
  • Туристический топор
  • Стельки с подогревом
  • Паяльная паста
  • Полка для инструмента
  • Пресс из домкрата
  • Золото из радиодеталей
  • Штанга своими руками
  • Как установить розетку
  • Ночник своими руками
  • Аудио передатчик
  • Датчик влажности почвы
  • Древесный уголь
  • Wi-Fi антенна
  • Электровелосипед своими руками
  • Ремонт смесителя
  • Индукционное отопление
  • Стол из эпоксидной смолы
  • Трещина на лобовом стекле
  • Эпоксидная смола
  • Как поменять кран под давлением
  • Кристаллы в домашних условиях

Помогите проекту, поделитесь в соцсетях 😉

Как работает счетчик

Радиация не имеет опознавательных признаков (вкуса, цвета, запаха), без специальной аппаратуры невидимку не распознать. Идея счетчика радиоактивных частиц принадлежит немецким физикам Гейгеру и Мюллеру. Гейгер придумал, Мюллер воплотил идею в жизнь. Схема претерпела мало изменений за 90 лет, прошедших с выпуска первых приборов, настолько она проста и технически совершенна, на ее основе работает большинство современных дозиметров.


Рассмотрим принцип работы классического счетчика Гейгера на примере датчика СМБ-20. Детище компании Росатом представляет собой герметичный баллончик с проволочным анодом внутри. Анод (с зарядом плюс) и стальной корпус прибора (отрицательный катод), наполненный инертным газом, образуют конденсатор.

Ионизирующие частицы, ударяясь о стенки корпуса, выбивают из металла электроны. Прорываясь к аноду сквозь газовую среду, электроны сталкиваются с молекулами газа и пополняют компанию новыми частицами. Напряжение в несколько сотен вольт между полюсами ускоряет процесс, превращает электронный поток в лавину. Газовое наполнение становится проводником. Сила тока резко возрастает. Регистрирующее устройство фиксирует скачок. Одновременно импульс вызывает падение напряжения на встроенном резисторе (высокоомное сопротивление), разность потенциалов между анодом и катодом уменьшается, разряд гасится, и счетчик готов ловить следующую частицу.

Цилиндрический СМБ-20 фиксирует гамма и жесткое бета-излучение, вызванное энергетически активными частицами с высокой проникающей способностью. Для обнаружения мягкого бета-излучения используют плоские счетчики (БЕТА -2) круглые или прямоугольной формы со слюдяным окошком, пропускающим частицы, не способные пробить металлический корпус. Здесь используется тот же принцип работы.

Альфа-частицы плохо распознаются приборами, поскольку активно взаимодействуют с окружающей средой и моментально теряют энергию. Обычный счетчик ловит α-излучение только на расстоянии нескольких сантиметров от источника.

Жизнь

Счетчик Гейгера, 1932 год. Музей науки в Лондоне .

С 1902 года Ганс Гейгер изучал физику и математику в Эрлангене , где он был членом братства Бубенройта и в первые два семестра прошел годичную военную службу на стороне. В 1904 году он также провел семестр в Университете Людвига Максимилиана в Мюнхене . В 1906 году он сдал второй государственный экзамен и получил докторскую степень в Эрлангене под руководством Эйльхарда Видемана за работу по измерениям излучения, температуры и потенциала в разрядных трубках с сильными токами . После окончания университета он стал ассистентом Артура Шустера из Манчестера и оставался им с 1907 года при его преемнике Эрнесте Резерфорде , чья атомная модель , расположенная в 1911 году, была частично основана на открытиях Гейгера (см. Рассеяние Резерфорда ). Помимо Резерфорда, он также работал с Эрнестом Марсденом . По окончании своего пребывания в Манчестере в 1912 году Гейгер считался международным авторитетом в области измерения радиоактивности, что также нашло отражение в книге с Вильгельмом Маковером.

В 1912 Гейгер вернулся в Германию в Physikalisch-Technische Reichsanstalt в Берлине -Charlottenburg, где он создал лабораторию по радиоактивности и работал с Джеймсом Чедвик , который последовал за ним из Манчестера и кого он также поддерживает во время своего интернирования во время Первой мировой войны , а также с Вальтером Боте . Во время Первой мировой войны он служил офицером артиллерии и работал в газовых войсках Фрица Габера ( 35-й пионерский полк ) на газовой войне. После завершения своей абилитации в Берлине в 1924 году Гейгер перешел в Университет Христиана Альбрехта в Киле в 1925 году в качестве профессора . С 1924 по 1925 год он и Боте ввели метод измерения совпадений , который они использовали для изучения эффекта Комптона . За этот эксперимент Боте позже получил Нобелевскую премию — после смерти Гейгера. Среди прочего, своим экспериментом они также продемонстрировали справедливость законов сохранения энергии и импульса на атомном уровне, что временами подвергалось сомнению (среди прочего, Нильсом Бором ). Вместе со своим докторантом Вальтером Мюллером в 1928 году он разработал в Киле счетную трубку Гейгера-Мюллера (широко известную как «счетчик Гейгера»), которая была представлена ​​публике в 1929 году.

В 1929 году Гейгер перешел в Университет Эберхарда Карлса в Тюбингене и, наконец, стал директором Физического института Берлинского технического университета в 1936 году как преемник Густава Герца, которого национал-социалисты вынудили уйти с должности . Там он, в частности, занимался космическими лучами .

Карл Шил и Ганс Гейгер (1928)

Geiger был основателем и главным редактором Zeitschrift für Physik с Карлом Шеель в 1920 году и был одним из редакторов до 1945. После смерти Шееля он был главным редактором с 1936 года. В 1926 году он был редактором справочника по физике в Springer Verlag.

В 1939 году он принимал участие в учредительных собраниях Урановой ассоциации, и его совет об активизации исследований в области ядерной энергии имел решающее значение на их встрече в сентябре. На заседании Исследовательского совета Рейха в 1942 г., посвященном дальнейшей поддержке исследований в области ядерной энергии, он высказался против дальнейшего продолжения работы.

Ханс Гейгер скончался 24 сентября 1945 года, вскоре после того, как его дом в Потсдаме был освобожден (он находился в закрытой зоне конференции союзных держав-победителей в Потсдаме) в больнице. Он уже ушел со своих научных постов в 1942 году из-за серьезного ревматического заболевания.

Ханса Гейгера похоронили на Новом кладбище в Потсдаме . Его могила сохранилась. Семья, переехавшая в Западный Берлин, установила второе надгробие на кладбище Грюневальд , которое также сохранилось.

В 1929 году он получил медаль Хьюза Королевского общества , в 1937 году медаль Дадделла Лондонского физического общества и в 1934 году премию Аррениуса Академической издательской ассоциации Лейпцига. С 1932 г. он был членом-корреспондентом Саксонской академии наук, а с 1936 г. — членом Прусской академии наук . С 1936 г. он был членом правления Немецкого физического общества . В 1935 году он был избран членом Леопольдина, а в 1937 году членом-корреспондентом Геттингенской академии наук .

Одним из его докторантов является Отто Хаксель , который также был его ассистентом в TH Berlin.

В 1970 году его именем был назван кратер на Луне, а в 2000 году — астероид (14413) Гейгера . Гимназия Ганса-Гейгера в Киль-Эллербеке и лекционный зал физического центра Университета Христиана Альбрехта в Киле также названы его именем, а также начальная школа и улица в его родном городе Нойштадт; в других городах его именем названы новые дороги.

Безопасность в руках


Отвечая растущему спросу на бытовые приборы контроля, промышленность предлагает дозиметры и регистраторы, в которых дозиметры совмещены с нитрат-тестерами. Модели российских марок, собранные на базе датчиков СМБ- 20 и БЕТА-2 отвечают основным требованиям, предъявляемым к приборам эко-диагностики, они

• удобны и просты в использовании;

• за секунды выдают достоверные результаты;

• долговечны;

• имеют дополнительный функционал;

При покупке земельного участка, дома, стройматериалов, автомобиля, мебели и продуктов дозиметр всегда полезно иметь под рукой. Гаджеты подходят для измерения уровня радиации в помещениях, на улице.

Сертифицированные дозиметры со встроенным счетчиком Гейгера можно приобрести в интернет — магазине «Аура-мед».

Действие — счетчик — гейгер

Трубки торцового счетчика Гейгера.

Действие счетчика Гейгера заключается в том, что при вхождении в трубку каждой частицы или кванта ионизирующего излучения происходит ионизация газа, наполняющего счетчик, и возникает электрический импульс. Этот импульс может восприниматься посредством громкоговорителя или при помощи реле; он может передаваться на механический счетчик. Если измеряемое радиоактивное вещество дает более 50 импульсов в секунду, то система механического счетчика с реле не в состоянии реагировать на них с такой скоростью; в таком случае необходимо вводить вспомогательное электронное устройство-пересчетную схему.

Принцип действия счетчика Гейгера ( рис. 6) следующий. В трубке /, заполненной разреженным газом, — сильное электрическое поле, возникшее под действием высокого напряжения постоянного тока. Если газ не ионизировать, ток в цепи отсутствует. Когда в трубку / попадают элементарные частицы, способные ионизировать газ, в электрическом поле появляются ионы. Таким образом, на основе точного подсчета частиц, пролетающих в трубке /, определяют период полураспада радиоактивных элементов.

На чем основано действие счетчика Гейгера.

Какая идея лежит в основе принципа действия счетчика Гейгера.

Схема счетчика Гейгера.

Радиоактивность можно также обнаруживать и измерять с помощью прибора, который называется счетчиком Гейгера. Действие счетчика Гейгера основано на ионизации вещества под действием излучения ( разд. Ионы и электроны, образующиеся под действием ионизирующего излучения, создают условия для протекания электрического тока. Схема устройства счетчика Гейгера показана на рис. 20.7. Он состоит из металлической трубки, наполненной газом. Цилиндрическая трубка имеет окно из материала, проницаемого для альфа -, бета — и гамма-лучей. По оси трубки натянута проволочка. Проволочка присоединена к одному из полюсов источника постоянного тока, а металлический цилиндр присоединен к противоположному полюсу. Когда в трубку проникает излучение, в ней образуются ионы и в результате через трубку протекает электрический ток. Импульс тока, создаваемый проникшим в трубку излучением, усиливается, чтобы его можно было легко детектировать; подсчет отдельных импульсов позволяет получить количественную меру излучения.

После того, как этот прибор был усовершенствован В. Действие счетчика Гейгера — Мюлле — р а основано на том, что пролетающие через газ заряженные частицы ионизируют встречающиеся на их пути атомы газа: отрицательно заряженная частица, отталкивая электроны, выбивает их из атомов, а положительно заряженная частица притягивает электроны и вырывает их из атомов.

Рекомендации

  1. ^ » Трубки Гейгера-Мюллера; выпуск 1 ’’, изданный Centronics Ltd, Великобритания.
  2. ^ Гленн Ф. Нолл. Обнаружение и измерение радиации, третье издание 2000 г. Джон Уайли и сыновья, ISBN 0-471-07338-5
  3. ^
  4. ^
  5. Видеть:

    • Х. Гейгер и В. Мюллер (1928), «Elektronenzählrohr zur Messung schwächster Aktivitäten» (Электронная счетная трубка для измерения самой слабой радиоактивности), Die Naturwissenschaften (Науки), т. 16, нет. 31, страницы 617–618.
    • Гейгер, Х. и Мюллер, В. (1928) «Das Elektronenzählrohr» (Электронная счетная трубка), Physikalische Zeitschrift, 29: 839-841.
    • Гейгер, Х. и Мюллер, В. (1929) «Technische Bemerkungen zum Elektronenzählrohr» (Технические примечания по электронной счетной трубке), Physikalische Zeitschrift, 30: 489-493.
    • Гейгер, Х. и Мюллер, В. (1929) «Demonstration des Elektronenzählrohrs» (Демонстрация электронно-счетной трубки), Physikalische Zeitschrift, 30: 523 и далее.

Что такое дозиметр

дозиметр — на самом деле очень простой прибор, нам нужен чувствительный элемент, в нашем случае трубка Гейгера, питание для неё, обычно около 400V постоянного тока и индикатор, в простейшем случае это может быть обычный динамик. Когда ионизирующее излучение ударяется о стенку счётчика Гейгера и выбивает из неё электроны, оно заставляет газ в трубке стать проводником, поэтому ток идёт прямо на динамик и заставляет его щелкать, если вам интересно, то в сети можно найти гораздо лучшее объяснение.

Я думаю, все согласятся, что щелки — не самый информативный индикатор, тем не менее, у него есть возможность оповещать об увеличении радиационного фона, но подсчет радиации при помощи секундомера для более точных результатов — штука довольно странная, поэтому я решил добавить устройству немного мозгов. Дозиметр — на самом деле очень простой прибор, нам нужен чувствительный элемент, в нашем случае трубка Гейгера, питание для неё, обычно около 400V постоянного тока и индикатор, в простейшем случае это может быть обычный динамик.

Как сделать счетчик гейгера своими руками.

Когда ионизирующее излучение ударяется о стенку счётчика Гейгера и выбивает из неё электроны, оно заставляет газ в трубке стать проводником, поэтому ток идёт прямо на динамик и заставляет его щелкать, если вам интересно, то в сети можно найти гораздо лучшее объяснение. Щелки — не самый информативный индикатор, тем не менее, у него есть возможность оповещать об увеличении радиационного фона, но подсчет радиации при помощи секундомера для более точных результатов — штука довольно странная, поэтому я решил добавить устройству немного мозгов.

Принцип работы счетчиков Гейгера

Это электровакуумный прибор с предельно простым принципом работы. Датчик радиоактивных излучений представляет собой металлическую или стеклянную камеру с металлизацией, заполненную разряженным инертным газом. По центру камеры располагают электрод. Внешние стенки камеры подключают к источнику высокого напряжения (обычно 400 вольт). Внутренний электрод — к чувствительному усилителю. Ионизирующие излучения (радиация) представляют собой поток частиц. Они буквально переносят электроны от высоковольтного катода в нити анода. На ней просто наводится напряжение, которое можно уже измерить, подключив к усилителю.

Высокая чувствительность счетчика Гейгера обусловлена лавинообразным эффектом. Энергия, которую регистрирует усилитель на выходе, — это не энергия источника ионизирующего излучения. Это энергия высоковольтного блока питания самого дозиметра. Проникшая частица только переносит электрон (энергетический заряд, который превращается в ток, регистрируемый измерителем). Между электродами введена газовая смесь, состоящая из благородных газов: аргона, неона. Она призвана гасить высоковольтные разряды. Если возникнет такой разряд, то это будет ложное срабатывание счетчика. Последующая измерительная схема игнорирует такие выбросы. Кроме того, высоковольтный блок питания тоже должен быть от них защищен.

Схема питания в счетчике Гейгера обеспечивает ток на выходе в нескольких микроампер при выходном напряжении 400 вольт. Точное значение напряжения питания устанавливается для каждой марки счетчика по его технической спецификации.

Альфа, бета, гамма и конструкция счетчиков

Альфа-излучение задерживается бумажкой. Бета-излучение можно экранировать листом оргстекла. А от жесткого гамма-излучения нужно строить стену из свинцовых кирпичей. Это знают, пожалуй, все. И все это имеет прямое отношение к счетчикам Гейгера: чтобы он почувствовал излучение, нужно, чтобы оно, как минимум, проникло внутрь. А еще оно должно не пролететь навылет, как нейтрино сквозь Землю.

Альфа бета гамма излучение/

Счетчик типа СБМ-20 (и его старший брат СБМ-19 и младшие СБМ-10 и СБМ-21) имеют металлический корпус, в котором нет никаких специальных входных окон. Из этого вытекает, что ни о какой чувствительности к альфа-излучению речи не идет. Бета-лучи он чувствует достаточно неплохо, но только если они достаточно жесткие, чтобы проникнуть внутрь. Это где-то от 300 кэВ. А вот гамма-излучение он чувствует, начиная с пары десятков кэВ.

А счетчики СБТ-10 и СИ-8Б (а также новомодные и малодоступные из-за ломовых цен Бета-1,2 и 5) вместо сплошной стальной оболочки имеют обширное окно из тонкой слюды. Через это окно способны проникнуть бета-частицы с энергией свыше 100-150 кэВ, что позволяет увидеть загрязнение углеродом-14, которое абсолютно невидимо для стальных счетчиков. Также окно из слюды позволяет счетчику чувствовать альфа-частицы.

Правда, в отношении последних надо смотреть на толщину слюды конкретных счетчиков. Так, СБТ-10 с его толстой слюдой его практически не видит, а у Беты-1 и 2 слюда тоньше, что дает эффективность регистрации альфа-частиц плутония-239 около 20%. СИ-8Б — где-то посередине между ними.

А вот теперь что касается пролета насквозь. Дело в том, что альфа- и бета-частицы счетчик Гейгера регистрирует практически все, что смогли проникнуть внутрь. А вот с гамма-квантами все печально. Чтобы гамма-квант вызвал импульс в счетчике, он должен выбить из его стенки электрон. Этот электрон должен преодолеть толщу металла от точки, где произошло взаимодействие, до внутренней поверхности, и поэтому «рабочий объем» детектора, где происходит его взаимодействие с фотонами гамма-излучения — это тончайший, в несколько микрон, слой металла. Отсюда ясно, что эффективность счетчика для гамма-излучения очень мала — в сто и более раз меньше, чем для бета-излучения.

Возможности счетчиков Гейгера, чувствительность, регистрируемые излучения

С помощью счетчика Гейгера можно зарегистрировать и с высокой точностью измерить гамма- и бета-излучение. К сожалению, нельзя распознать вид излучения напрямую. Это делается косвенным методом с помощью установки преград между сенсором и обследуемым объектом или местностью. Гамма-лучи обладают высокой проницаемостью, и их фон не меняется. Если дозиметр засек бета-излучение, то установка разделительной преграды даже из тонкого листа металла почти полностью перекроет поток бета-частиц.

Примечательная особенность счетчика Гейгера — чувствительность, в десятки и сотни раз превышающая необходимый уровень. Если в совершенно защищенной свинцовой камере включить счетчик, то он покажет огромный естественный радиационный фон. Эти показания не являются дефектом конструкции самого счетчика, что было проверено многочисленными лабораторными исследованиями. Такие данные — следствие естественного радиационного космического фона. Эксперимент только показывает, насколько чувствительным является счетчик Гейгера.

Специально для измерения этого параметра в технических характеристиках указывается значение «чувствительность счетчика имп мкр» (импульсов в микросекунду). Чем больше этих импульсов — тем больше чувствительность.

Измерение радиации счетчиком Гейгера, схема дозиметра

Схему дозиметра можно разделить на два функциональных модуля: высоковольтный блок питания и измерительная схема. Высоковольтный блок питания — аналоговая схема. Измерительный модуль на цифровых дозиметрах всегда цифровой. Это счетчик импульсов, который выводит соответствующее значение в виде цифр на шкалу прибора. Для измерения дозы радиации необходимо подсчитать импульсы за минуту, 10, 15 секунд или другие значения. Микроконтроллер пересчитывает число импульсов в конкретное значение на шкале дозиметра в стандартных единицах измерения радиации. Вот самые распространенные из них:

  • рентген (обычно используется микрорентген);
  • Зиверт (микрозиверт — мЗв);
  • Бэр;
  • Грей, рад,
  • плотность потока в микроваттах/м2.

Сравнение газоразрядного счетчика Гейгера с полупроводниковым датчиком радиации

Счетчик Гейгера является газоразрядным прибором, а современная тенденция микроэлектроники — повсеместное от них избавление. Были разработаны десятки вариантов полупроводниковых сенсоров радиации. Регистрируемый ими уровень радиационного фона значительно выше, чем для счетчиков Гейгера. Чувствительность полупроводникового сенсора хуже, но у него другое преимущество — экономичность. Полупроводникам не требуется высоковольтного питания. Для портативных дозиметров с батарейным питанием они хорошо подходят. Еще одно их преимущество — регистрация альфа-частиц. Газовый объем счетчика существенно больше полупроводникового сенсора, но все равно его габариты приемлемы даже для портативной техники.

Параметры и режимы работы счетчика Гейгера

Чтобы рассчитать чувствительность счетчика, оцените отношение количества микрорентген от образца к числу сигналов от этого излучения. Прибор не измеряет энергию частицы, поэтому не дает абсолютно точной оценки. Калибровка устройств происходит по образцам изотопных источников.

Также нужно смотреть на следующие параметры:

Рабочая зона, площадь входного окна

Характеристика площади индикатора, через которую проходят микрочастицы, зависит от его размеров. Чем шире площадь, тем большее число частиц будет поймано.

Рабочее напряжение

Напряжение должно соответствовать средним характеристикам. Сама характеристика работы — это плоская часть зависимости количества фиксированных импульсов от напряжения. Ее второе название — плато. В этом месте работа прибора достигает пиковой активности и именуется верхним пределом измерений. Значение — 400 Вольт.

Рабочая ширина

Рабочая ширина — разница между напряжением выхода на плоскость и напряжением искрового разряда. Значение — 100 Вольт.

Наклон

Величина измеряется в виде процента от количества импульсов на 1 вольт. Он показывает погрешность измерения (статистическую) в подсчете импульсов. Значение — 0,15 %.

Температура

Температура важна, поскольку счётчик часто приходится применять в сложных условиях. Например, в реакторах. Счетчики общего использования: от -50 до +70 С по Цельсию.

Рабочий ресурс

Ресурс характеризуется общим числом всех импульсов, зафиксированных до момента, когда показания прибора становятся некорректными. Если в устройстве есть органика для самогашения, количество импульсов составит один миллиард. Ресурс уместно подсчитывать только в состоянии рабочего напряжения. При хранении прибора расход останавливается.

Время восстановления

Это промежуток времени, за который устройство проводит электричество после реагирования на ионизирующую частицу. Существует верхний предел для частоты импульсов, ограничивающий интервал измерений. Значение — 10 микросекунд.

Из-за времени восстановления (его ещё называют мертвое время) прибор может подвести в решающий момент. Для предотвращения зашкаливания производители устанавливают свинцовые экраны.

От какой радиации нужен счетчик Гейгера?

Для того, чтобы измерение радиации счетчиком Гейгера следует знать о видах радиации. Все зависит от состава излучения, то есть из каких частиц оно состоит и насколько далеко источник. Именно виды частиц влияют на то, какие последствия вызовет излучение у человека. Альфа-частицы считаются наиболее безопасными для человека, но даже они при длительном воздействии способны вызывать заболевания, опухоли и необратимые изменения в организме. В это же время наиболее опасным видом излучений является излучение, в котором принимают участие бета-частицы. Так как это опасное излучение именно его чаще всего фиксирует счетчик Гейгера.

Бета-частицы могут быть как природного происхождения, так и результатом деятельности человека. Если в природе их можно встретить при извержении вулканов, то мы чаще всего сталкиваемся с ними из-за работы АЭС или химических лабораторий. Высокая концентрация таких элементов необратимо влияет на состояние человека. Бета-излучения становятся причиной онкологических заболеваний, опухолей, поражения костного мозга и слизистых оболочек. До конца еще не изучено какое влияние радиация может оказывать на организм в зависимости от ее концентрации и времени воздействия. Но количество жертв Чернобыля, Фукусимы и Нагасаки показывает, что действительно возможен как летальный исход, так и различные мутации и заболевания, сопровождающие человека всю дальнейшую жизнь. Так дети, которые родились на зараженных территориях уже рождались с большими отклонениями или вовсе не выживали.

Поэтому так важно проверять количество радиации и соответствие ее нормам. Человек не видит этого излучения и зачастую может не замечать его воздействия вплоть до появления серьезных заболеваний

Быть предупрежденным гораздо лучше, нежели стать жертвой опасного излучения. Ведь существуют современные способы уменьшения излучения и защиты от него.

Отсюда и хорошо видно, для чего нужен счетчик Гейгера. Только благодаря этому прибору можно провести быстрый и качественный мониторинг местности на наличие ионизирующих частиц. Благодаря тому, что сейчас выпускаются разные модели уже можно встретить как профессиональные приборы, так и бытовые. Бытовые приборы позволяют быстро и качественно проводить измерения радиационного фона в домашних условиях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector