Обзор всех аэс россии

Принцип работы АЭС

Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.

Существуют различные виды ядерных реакторов:

  1. PHWR (также имеет название «pressurised heavy water reactor» – «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой – D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
  2. ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
  3. GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов – графит, отсюда и название. КПД составляет около 40%.

По принципу устройства реакторы также делят на:

  • PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
  • BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
  • РБМК (канальный реактор, имеющий особенно большую мощность);
  • БН (система работает за счет быстрого обмена нейтронами).

Устройство и структура атомной электростанции. Как работает АЭС?

Устройство АЭС

Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:

  • реактора;
  • бассейна (именно в нем хранят ядерное топливо);
  • машины, перегружающие топливо;
  • БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).

Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.

Принцип работы АЭС

На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:

  • ядерная с переходом в тепловую;
  • тепловая, переходящая в механическую;
  • механическая, преобразовывающаяся в электрическую.

Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).

И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.

Безопасность работы АЭС

Узнав принцип работы АЭС мы должны понимать как же устроена безопасность. Устройство АЭС сегодня требует повышенного внимания к правилам безопасности. Затраты на безопасность АЭС составляют примерно 40% от общей стоимости самой станции.

В схему АЭС закладываются 4 физических барьера, которые препятствуют выходу радиоактивных веществ. Что должны делать эти барьеры? В нужный момент суметь прекратить ядерную реакцию, обеспечивать постоянный отвод тепла от активной зоны и самого реактора, предотвращать выход радионуклеидов за пределы контайнмента (гермозоны).

Первый барьер – прочность урановых таблеток

Важно, чтобы они не разрушались под воздействием высоких температур в ядерном реакторе. Во многом то, как работает атомная станция, зависит от того, как «испекли» таблетки из урана на начальной стадии изготовления

Если таблетки с урановым топливом запечь неверно, то реакции атомов урана в реакторе будут непредсказуемыми.
Второй барьер – герметичность ТВЭЛов. Циркониевые трубки должны быть плотно запечатаны, если герметичность будет нарушена, то в лучшем случае реактор будет поврежден и работа остановлена, в худшем – все взлетит на воздух.
Третий барьер – прочный стальной корпус реактора, (та самая большая башня – гермозона) который «удерживает» в себе все радиоактивные процессы. Повредится корпус – радиация выйдет в атмосферу.
Четвертый барьер – стержни аварийной защиты. Над активной зоной на магниты подвешиваются стержни с замедлителями, которые могут за 2 секунды поглотить все нейтроны и остановить цепную реакцию.

Если, несмотря на устройство АЭС с множеством степеней защиты, охладить активную зону реактора в нужный момент не удастся, и температура топлива возрастет до 2600 градусов, то в дело вступает последняя надежда системы безопасности – так называемая ловушка расплава.

Дело в том, что при такой температуре дно корпуса реактора расплавится, и все остатки ядерного топлива и расплавленных конструкций стекут в специальный подвешенный над активной зоной реактора «стакан».

Ловушка расплава охлаждаема и огнеупорна. Она наполнена так называемым «жертвенным материалом», который постепенно останавливает цепную реакцию деления.

Таким образом, схема АЭС подразумевает несколько степеней защиты, которые практически полностью исключают любую возможность аварии.

Безопасность

Список радиационных аварий в мире, начатый 12 декабря 1952 года (Чок-Риверская лаборатория) по 8 августа 2021 (полигон ВМФ России «Нёнокса»), включает в себя 22 инцидента. Кроме того, зафиксировано 7 случаев радиоактивного загрязнения местности.

Вопросы безаварийной эксплуатации на предприятиях ядерной энергетики, правильного обращения с отходами, отработавшим установленный срок топливом, проблемы консервации, ликвидации объектов атомной военной и промышленной отрасли стали в настоящее время очень актуальными.

Контроль деятельности опасных производственных объектов (к числу которых относится АЭС) осуществляет Ростехнадзор. В его распоряжении имеется целый ряд регламентирующих состояние безопасности документов.

2018-2019 годы вывели «Росатом» в число лидеров экологической безопасности. В этом нет ничего удивительного, так как ядерная энергетика всегда являлась самой экологически чистой сферой производства энергоресурсов. Ведётся работа по созданию более безопасных реакторов, размещения АЭС в сейсмоустойчивых зонах. На госкорпорацию возложена обязанность организовать ликвидацию химического оружия, построить комплексы по утилизации чрезвычайных отходов.

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.

Белоярская АЭС

Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.

Курская АЭС

Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции — 4000 МВт.

Ленинградская АЭС

Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Как создавалась первая в мире АЭС?

Для атомного проекта СССР в 1945 — 1946 годах были созданы 4 лаборатории ядерной энергетики. Первая и четвертая в Сухуми, вторая – в Снежинске и третья вблизи станции Обнинская в Калужской области, называлась она лаборатория В. Сегодня это физико-энергетический институт им. Лейпуцкого.

Она создавалась с участием немецких физиков, которых после окончания войны добровольно — принудительно выписывали из Германии для работы в атомных лабораториях Союза, точно так же с немецкими учеными поступали и в США. Одним из прибывших был физик-ядерщик Хайнс Позе, который какое-то время возглавлял Обнинскую лабораторию В. Так что своим открытием первая атомная станция обязана не только советским, но и немецким ученым.

Разрабатывалась первая в мире АЭС в Курчатовской лаборатории №2 и в «НИИхиммаше» под руководством Николая Доллежаля. Доллежаль был назначен главным конструктором ядерного реактора будущей АЭС. Создавали первую АЭС мира в Обнинской лаборатории В, все работы курировал сам Игорь Васильевич Курчатов, которого считали «отцом атомной бомбы», а теперь хотели сделать и отцом ядерной энергетики.

В начале 1951 года проект АЭС находился только на стадии разработки, но здание под атомную станцию уже начали строить. Тяжелые конструкции из железа и бетона, которые невозможно переделать или расширить, уже существовали, а ядерный реактор все еще не был до конца спроектирован. Позже у строителей появится еще одна головная боль – вставить ядерную установку в уже готовое здание.

Интересно то, что первая АЭС в мире проектировалась так, что в ТВЭЛы – тонкие трубки, которые помещаются в ядерную установку, помещались не урановые таблетки, как сегодня, а урановый порошок, из сплавов урана и молибдена. Первые 512 ТВЭЛов для запуска АЭС были сделаны на заводе в городе Электросталь, каждый из них проходил проверку на прочность, делали это вручную. В ТВЭЛ заливалась горячая вода нужной температуры, по покраснению трубки, ученые определяли, выдерживает ли металл высокую температуру. В первых партиях ТВЭЛов было очень много бракованных изделий.

Принцип работы ядерного (атомного) реактора

У любого ядерного реактора есть несколько частей: активная зона с топливом и замедлителем, отражатель нейтронов, теплоноситель, система управления и защиты. В качестве топлива в реакторах чаще всего используются изотопы урана (235, 238, 233), плутония (239) и тория (232).  Активная зона представляет собой котел, через который протекает обычная вода (теплоноситель). Среди других теплоносителей реже используется «тяжелая вода» и жидкий графит. Если говорить про работу АЭС, то ядерный реактор используется для получения тепла. Само электричество вырабатывается тем же методом, что и на других типах электростанций — пар вращает турбину, а энергия движения преобразуется в электрическую энергию.

Приведем ниже схему работы ядерного реактора.

Схема ядерного реактора на АЭС

Как мы уже говорили, при распаде тяжелого ядра урана образуются более легкие элементы и несколько нейтронов. Образовавшиеся нейтроны сталкиваются с другими ядрами, также вызывая их деление. При этом количество нейтронов растет лавинообразно.

Здесь нужно упомянуть коэффициент размножения нейтронов. Так, если этот коэффициент превышает значение, равное единице, происходит ядерный взрыв. Если значение меньше единицы, нейтронов слишком мало и реакция угасает. А вот если поддерживать значение коэффициента равным единице, реакция будет протекать долго и стабильно.

Цепная реакция

Вопрос в том, как это сделать? В реакторе топливо находится в так называемых тепловыделяющих элементах (ТВЭЛах). Это стержни, в которых в виде небольших таблеток находится ядерное топливо. ТВЭЛы соединены в кассеты шестигранной формы, которых в реакторе могут быть сотни. Кассеты с ТВЭЛами располагаются вертикально, при этом каждый ТВЭЛ имеет систему, позволяющую регулировать глубину его погружения в активную зону. Помимо самих кассет среди них располагаются управляющие стержни и стержни аварийной защиты. Стержни изготовлены из материала, хорошо поглощающего нейтроны. Так, управляющие стержни могут быть опущены на различную глубину в активной зоне, тем самым регулируя коэффициент размножения нейтронов. Аварийные стержни призваны заглушить реактор в случае чрезвычайной ситуации.

ТВЭЛы, помещенные в топливную кассету

Устройство АЭС

Рейтинг:   / 63

Подробности
Родительская категория: Зона отчуждения
Категория: Наука

В обычных электростанциях, работающих на угле или природном газе, ископаемое топливо сжигают в топке и тепло пламени образует в котле пар. Этот пар — исторический двигатель индустриальной эпохи – с ревом устремляется под давлением, иногда достигающим 190 кгс/см2 при температуре до 1000 С, на огромный турбогенератор. Пар вращает мощную турбину, соединенную с гигантским генератором, вырабатывающим электричество. Такая современная электростанция дает более 1 млн кВт.ч энергии. Электростанции данного типа «прожорливы» в отношении топлива. Так, если применяют уголь, то каждый час необходимо сжигать его более чем 400 тон. Атомная электростанция «сжигает» беспламенное топливо, представленное ураном. Тепло выделяется в результате деления атомов в условиях сдерживаемой человеком цепной реакции.

Поскольку самого процесса сжигания как такового не происходит, выхлопные газы отсутствуют и, конечно же, нет загрязнения атмосферы двуокисью серы или углерода.

Ядерная «топка» представляет собой активную зону, объемом, меньшим, чем средний объем жилой комнаты в нашем доме. В ней содержится годовой запас ядерного топлива — более 100 т окиси урана в виде таблеток диаметром с наперсток. Около 10 млн этих крошечных таблеток аккуратно размещены в трубках длиной 3,7 м, или топливных стержнях, герметично закрытых для предотвращения утечки радиации. Ядерное топливо, используемое в современных атомных электростанциях, содержит только несколько процентов 235U,) в сравнении с 90 % содержания его в радиоактивном материале, раздробленном в атомном оружии на отдельные субкритические части. В результате вероятность того, что ядерный реактор взорвется наподобие атомной бомбы, отсутствует. Но несмотря на столь низкое содержание ядерного топлива, оно все же потенциально сильное вещество — в одной такой таблетке с массой 14 г выделяется энергии, по количеству равное той, что мы получаем при сжигании 0,6 м3 нефти.  Для того чтобы начать и поддерживать цепную реакцию на определенном уровне, топливные стержни надо внедрить в определенное вещество, преимущественно состоящее из легких химических элементов, цель которого состоит в торможении или замедлении» нейтронов, образующихся в результате деления 235U появившись при делении атома урана, эти нейтроны движутся с большой скоростью, но, как это ни странно, они будут более эффективными в плане расщепления других атомов урана в том случае, если сперва затормозятся в активной зоне реактора, столкнувшись с другими атомами легких элементов.

Существуют всевозможные вещества, которые применяют в качестве активной зоны или замедлителя реактора. Три из них применяют наиболее часто: графит (углерод), обычная (легкая) вода или «тяжелая» вода, т. е. вода, в которой водород заменен на дейтерий — более тяжелый изотоп водорода. Рассмотрение устройства активной зоны ядерного реактора, по-видимому, будет чрезмерно насыщено техническими деталями, что выходит за рамки нашей статьи, но оно оказывается чрезвычайно важным для понимания конструкции промышленных атомно-энергетических установок. Ключевыми элементами безопасной работы реактора служат регулирование цепной реакции, охлаждение активной зоны и защита. Реакторы должны проектироваться, изготовляться, работать и подвергаться проверке так, чтобы вероятность отказа любого из этих ключевых элементов была предельно мала, потому что в результате аварии огромное количество радиоактивности попадет в окружающую среду. Проектирование реакторов основано на принципе дублирования, т. е. создания многочисленных параллельных систем с таким расчетом, что если одна система откажет, вторая возьмет на себя ее функции

Это особенно важно для системы охлаждения реактора

Предпосылки к созданию первой в мире АЭС

Изучение реакции атомов велось с начала 20го века во всех развитых странах мира. О том, что людям удалось подчинить себе энергию атома, первыми заявили в США, когда 6 августа 1945 года провели испытания, сбросив атомную бомбу, на японские города Хиросима и Нагасаки. Параллельно велось изучение применения атома в мирных целях. Разработки такого рода были и в СССР.

Еще в 40е Курчатов говорил о необходимости мирного изучения атома в целях извлечения его энергии на благо людей. Но попытки создания атомной энергетики прерывал Лаврентий Берия, в те годы именно он курировал проекты изучения атома. Берия считал, что атомная энергия может быть сильнейшим оружием в мире, способным сделать СССР непобедимой державой. Ну, собственно по поводу сильнейшего оружия он не ошибался…

После взрывов в Херосиме и Нагасаке в СССР началось усиленное изучение ядерной энергетики. Ядерное оружие в тот момент было гарантом безопасности страны. После испытаний советского ядерного оружия на Семипалатинском полигоне, в СССР началось активное развитие ядерной энергетики. Ядерное оружие уже было создано и испытано, можно было сосредоточиться на использовании атома в мирных целях.

Атомная станция теплоснабжения

Первые проекты таких станций были разработаны ещё в 70-е годы XXвека, но из-за наступивших в конце 80-х годов экономических потрясений и жёсткого противодействия общественности, до конца ни один из них реализован не был.

Исключение составляют Билибинская АЭС небольшой мощности, она снабжает теплом и электричеством посёлок Билибино в Заполярье (10 тыс. жителей) и местные горнодобывающие предприятия, а также оборонные реакторы (они занимаются производством плутония):

  • Сибирская АЭС, поставляющая тепло в Северск и Томск.
  • Реактор АДЭ-2 на Красноярском горно-химического комбинате, с 1964 г.поставляющий тепловую и электрическую энергию для города Железногорска.

На момент кризиса было начато строительство нескольких АСТ на базе реакторов, аналогичных ВВЭР-1000:

  • Воронежская АСТ
  • Горьковская АСТ
  • Ивановская АСТ (только планировалась)

Строительство этих АСТ было остановлено во второй половине 1980-х или начале 1990-х годов.

В 2006 году концерн «Росэнергоатом» планировал построить плавучую АСТ для Архангельска, Певека и других заполярных городов на базе реакторной установки КЛТ-40, используемой на атомных ледоколах.

Имеется проект, строительства необслуживаемой АСТ на базе реактора «Елена», и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем»

История «мирного атома» в СССР и России

XX век навсегда останется в истории точкой отсчёта покорения «атома». Незадолго до его начала английские физики Джозеф Томсон и Эрнест Резерфорд использовали радиоактивные частицы при изучении процесса ионизации. Первая ядерная реакция была осуществлена Резерфордом во время бомбардировки атомов азота α-частицами в 1919 году.

Тремя годами позже в Петрограде под руководством академика Вернадского начал работу Радиевый институт. Учреждение объединило в себе все организации города, работающие в области радиологии. В плане практической деятельности институт осуществлял научное руководство радиевым рудником и заводом посёлка Бондюга в Татарстане.

На базе учебного заведения в 1933 году проводится Всесоюзная научная конференция, посвящённая проблемам ядерной физики. 1939 год ознаменовался открытием возможности урановой ядерной реакции, в разработке которой приняли участие выдающиеся советские учёные того времени. Через год Президиумом Академии Наук СССР утверждается программа научных исследований.

Вторая мировая война, осуществление управляемой ядерной реакции Э. Ферми в Чикаго, бомбардировка атомными бомбами японских городов Хиросима и Нагасаки и последующие события внесли жёсткие коррективы в работу учёных-ядерщиков. Во главе работ по урану ставят профессора И. В. Курчатова. Создаётся профильная лаборатория, затем институт, который существует и поныне. Чрезвычайная упорная работа приносит результаты:

  • 1944 год – первые килограммы чистого урана на территории Европы и Азии;
  • 1946 год – запущен первый в Евразии реактор;
  • 29 августа 1949 года на полигоне под Семипалатинском испытана первая в СССР атомная бомба;
  • 1953 год – водородная бомба;
  • 26 июня 1954 года первая в мире атомная электростанция (реактор «Атом мирный») в городе Обнинске, СССР, дала электрический ток.

Помимо чисто военных целей (бомбы, ракеты, подводные лодки), ядерная энергия начинает использоваться в народном хозяйстве и научных исследованиях. Кроме электростанции, в 60-ых годах прошлого века был запущен в работу исследовательский реактор на быстрых нейтронах, появился первый атомный ледокол – «Ленин».

Атомная энергетика России

Строительство атомных электростанций в нашей стране принимает широкие масштабы. 1958 год. Запущена первая очередь Сибирской АЭС (атомная электрическая станция), начато сооружение промышленной Белоярской атомной электростанции. В сентябре 1964 года вступает в строй первый энергоагрегат Нововоронежской АЭС. 1973 год – Ленинградская атомная станция.

Так продолжается вплоть до 1986 года, когда катастрофа планетарного масштаба на Чернобыльской электростанции вынудила пересмотреть доктрину ядерной энергетической безопасности. На территории СССР появилось 11 недостроенных атомных объектов. 

После распада Советского Союза в атомной отрасли произошёл целый ряд структурных изменений. Одно ведомство сменяло другое. В 1992 году путём преобразований было создано профильное министерство. Огромные экономические трудности привели к стагнации ядерной индустрии страны. Лишь благодаря высокой потребности в энергоресурсах и активной позиции специалистов атомные мощности и ресурсный человеческий потенциал в значительной степени удалось сохранить. В конце 1991 года в работе оставались 28 энергоблоков производительностью 20 242 МВт.

Для справки: общая мощность электростанций страны составляла на начало 1992 года 211 755 МВт. С 2000 года открывается новый этап атомной энергетики России.

Атомная электростанция: принцип работы

Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.

Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так: После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.

Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.

Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.

Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.

Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.

Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.

Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?

Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.

Атомная электростанция и ее устройство:

Атомная электростанция (АЭС) – это ядерная установка, назначением которой является выработка электрической энергии.

Атомная электростанция (АЭС) – это ядерная установка для производства электрической энергии в заданных режимах и условиях применения, располагающаяся в пределах определенной проектом территории, на которой для осуществления этой цели используется ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом).

Отличие АЭС от иных видов электростанций заключается в том, что ее конструкция включает в себя ядерный реактор, являющийся ее основным компонентом. В качестве топлива в ней применяется уран-235.

АЭС располагается на территории нескольких зданий, в которых размещается комплекс сооружений, систем и оборудования, требуемых для обеспечения ее работы.

В главном корпусе АЭС находится реакторный зал, в котором располагаются:

– реактор,

– специальный бассейн, служащий для выдержки ядерного топлива,

– машина для выполнения перегрузок топлива (перегрузочная машина).

Работа этого оборудования контролируется персоналом – операторами, использующими в этих целях блочный щит управления.

Ключевой элемент реактора – зона, располагающаяся в бетонной шахте. В нем также предусмотрена система, обеспечивающая управление и защитные функции; с ее помощью можно выбирать режим, в котором должна проходить управляемая цепная реакция деления. Система обеспечивает и аварийную защиту, что позволяет оперативно прекратить реакцию в случае возникновения внештатной ситуации.

Во втором здании АЭС находится турбинный зал, в котором располагаются турбина и парогенераторы. Кроме того, имеется корпус, в котором перегружается ядерное топливо и хранится отработанное ядерное топливо в специально предусмотренных бассейнах.

На территории атомной станции располагаются конденсаторы, а также градирни, охладительный пруд и брызгальный бассейн, представляющие собой компоненты оборотной системы охлаждения. Градирнями называются башни, выполненные из бетона и по форме напоминающие усеченный конус; в качестве пруда может служить естественный или искусственный водоем. АЭС оборудована высоковольтными линиями электропередач, простирающимися за границы ее территории.

Строительство первой в мире атомной электростанции было начато в 1950 году в России и завершено четыре года спустя. Для осуществления проекта была выбрана территория неподалеку от пос. Обнинского (Калужская область).

Однако впервые вырабатывать электроэнергию начали в Соединенных Штатах Америки в 1951 году; первый успешный случай ее получения был зафиксирован в штате Айдахо.

В сфере производства электроэнергии лидируют США, где ежегодно вырабатывается более 788 млрд кВт/ч. В список лидеров по объемам выработки также входят Франция, Япония, Германия и Россия.

Проблема топлива

Не последнюю роль в популярности АЭС играет топливо – уран-235. Его требуется значительно меньше, чем любых других видов с одновременным огромным выбросом энергии. Принцип работы реактора АЭС подразумевает использование этого топлива в виде специальных «таблеток», уложенных в стержни. Фактически, единственная сложность в данном случае заключается в создании именно такой формы. Тем не менее в последнее время начинает появляться информация, что текущих мировых запасов тоже не хватит надолго. Но и это уже предусмотрено. Самые новые трехконтурные реакторы работают на уране-238, которого очень много, и проблема дефицита топлива исчезнет надолго.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector