Как работает термоядерный реактор и почему его до сих пор не построили

Технология недели: модель авторизации Zero Trust

Распространение AR/VR-устройств делает популярными новые виды авторизации пользователей. Дело в том, что у такого оборудования нет экрана, на котором можно было бы ввести пароль или отсканировать отпечаток пальца. Взамен эксперты предлагают использовать модель Zero Trust (сокращенно ZeTA).

При таком способе авторизации система предлагает пользователю ответить «да» или «нет» на несколько вопросов. «Вопросы» могут быть отдельными словами. Ответы должны соответствовать секретной фразе. Например, ключ — это словосочетание «желтый или колесо». Пользователь пройдет авторизацию, если выберет «подсолнух» и «крутиться», а неверными назовет слова «сердце» и «уголь». При этом количество вопросов может варьироваться. Такой подход сделает авторизацию более удобной и надежной, особенно если человек использует очки дополненной реальности в общественном месте.

Как заставить работать термоядерный синтез?

На прошлой неделе редактор io9 посетил Принстонскую лабораторию физики плазмы, чтобы взглянуть на недавно модернизированный эксперимент NSTX-U (National Spherical Torus Experiment), самый мощный «сферический токамак» — реактор синтеза на Земле. 85-тонная машина в форме гигантского яблока использует высокоэнергетические частицы для нагрева атомов водорода до температуры 100 миллионов градусов по Цельсию, что выше, чем в ядре Солнца. Для удержания этой сверхгорячей плазмы, обмоточные медные катушки генерируют магнитное поле в 20 000 раз более мощное, чем у Земли. Все для того, чтобы в течение нескольких волшебных секунд атомные ядра сталкивались, синтезировались и выпускали энергию.

Этот эксперимент является шагом на пути к создания установки синтеза, которая будет работать постоянно, запитывая целые города всего лишь одним граммом морской воды.

Звучит, конечно, это прекрасно. Но ядерная физика говорит свое веское «нет»

Легко понять, почему сфера энергии синтеза склонна к громким заявлениям — в основе лежит просто невероятная идея. Но что больше всего поражает во время экскурсии по PPPL, это не волшебная наука, которая творится внутри гигантского реактора, и не центр управления а-ля Хьюстон, где десятки ученых проводят моделирования на суперкомпьютерах. Поражает баланс оптимизма на тему будущего энергии синтеза и реализма на тему сложных физических и технических проблем, которые необходимо решить на пути к этому будущему.

Первая проблема, как выяснили физики в 1950-х и 1960-х, заключается в том, что синтезируемая плазма — свободно текущий бульон из протонов и электронов, атомные ядра которых сталкиваются и испускают энергию — не любит, когда ее удерживают. Она хочет расплескиваться повсюду, и нам нужно достаточно высокое давление и длительное время, чтобы мы могли произвести больше энергии, чем потратить на удержание этой плазмы.

Наше солнце удерживает плазму силой своей гравитации, но на Земле мы должны полагаться на мощные магниты и лазеры для этого. И цена ошибки очень высока. Даже крошечное количество сбежавшей плазмы может пробить стенку реактора и остановить процесс.

Область физики плазмы расцвела из желания закупорить звезду в бутылке. За последние несколько десятилетий эта область разрослась в бесчисленных направлениях, от астрофизики до космической погоды и нанотехнологий.

По мере того, как росло наше общее понимание плазмы, росли и наши возможности поддержания условий синтеза в течение больше чем секунды. В начале этого года новый сверхпроводниковый реактор синтеза в Китае смог удержать плазму температурой в 50 миллионов градусов по Цельсию в течение рекордных 102 секунд. Wendelstein X-7 Stellarator, который заработал в Германии впервые прошлой осенью, как ожидается, сможет побить этот рекорд и удержать плазму до 30 минут за раз.

Недавнее обновление NSTX-U выглядит скромным в сравнении с этими монстрами: теперь эксперимент может удерживать плазму в течение пяти секунд вместо одной

Но и это тоже является важной вехой

NSTX-U позволит принстонским исследователям заполнить некоторые пробелы между тем, что известно из физики плазмы сейчас, и тем, что будет необходимо для создания опытно-промышленной установки, способной достичь устойчивого состояния горения и генерации чистой электроэнергии.

Термоядерный реактор уровня «школьный проект по физике»[править]

В 1950 году некто Фарнсворт прикола ради сбацал фузор имени себя — он использует электростатический метод удержания плазмы (создание отрицательного потенциала в облаке электронов, который разгоняет ионы в направлении ловушки где уже и идет реакция), красиво светится синеньким и выглядит жутко научно. Толку от него нет вообще никакого — к критерию Лоусона он не подбирается даже близко, не смотря на неоднократные попытки его заубгрейдить. Зато при наличии некоторой суммы денег на топливо и электронные компоненты, а также при наличии прямых рук, собрать эту фигню можно даже дома. Но лучше не надо.

Тема недели: термоядерный реактор ITER

28 июля 2020 года в исследовательском центре Кадараш во Франции начали собирать экспериментальный термоядерный реактор типа токамак — сокращенно от «тороидальная камера с магнитными катушками». Строительство реактора планируют завершить в 2025 году. В проекте ITER участвуют ЕС, Индия, Китай, Южная Корея, Россия, США и Япония.

Термоядерный синтез — это реакция, в ходе которой легкие атомы объединяются в более тяжелые. В результате высвобождается энергия. Такой процесс постоянно происходит на Солнце и других звездах. Если ученые смогут построить работающий реактор, люди получат источник неограниченной и «зеленой» энергии.

Сам токамак по форме похож на полый бублик, из которого откачали воздух. В качестве топлива для реактора используют изотопы (подвиды) водорода дейтерий и тритий. Их помещают в токамак и с помощью электрического тока разогревают до температуры в несколько млн градусов. Тогда водород превращается в плазму — заряженный газ, в котором электроны оторваны от ядер атомов. Вся эта масса удерживается внутри реактора при помощи очень мощных магнитов. При температуре 150 млн °C (в десять раз жарче, чем на Солнце) начинается термоядерная реакция. Дейтерий и тритий сливаются и образуют атом гелия-4 и один нейтрон. Нейтроны вылетают за пределы магнитной ловушки и, сталкиваясь со стенками реактора, нагревают воду внутри них. В результате образуется пар, который вращает турбины.

Макет реактора ITER

(Фото: ITER)

Первую плазму на реакторе ITER планируют получить сразу после окончания строительства, в 2025 году. Однако эксперименты с термоядерной реакцией проведут только в 2035 году. Если они пройдут успешно, начнется выпуск термоядерных реакторов DEMO, которые можно будет использовать в коммерческих целях. ITER не единственный в мире проект, цель которого — получить термоядерную энергию. Токамаки есть в Китае, Великобритании и США.

Некоторые компании предлагают и другие типы реакторов. Основной конкурент токамака — стеллератор Wendelstein 7-X, который построили в Институте физики плазмы им. Макса Планка в немецком Грайфсвальде. Если токамак удерживает плазму в центре при помощи мощных магнитов, то стеллератор делает это благодаря своей сложной форме, напоминающей объемную ленту Мебиуса.

Макет стеллератора. Желтым показана плазма, синим — магнитное поле

(Фото: Max-Planck Institut für Plasmaphysik)

Американский стартап TAE Technologies (ранее Tri Alpha Energy) предложил реактор вытянутой формы. В качестве топлива компания использует водород и бор-11. При взаимодействии эти химические элементы не образуют нейтроны, а значит, не создают радиацию. Топливо на большой скорости подается в реактор с двух сторон. От столкновения оно нагревается и превращается в плазму. Минус такого устройства в том, что для его работы нужна очень высокая температура, примерно в 3 млрд °C.

Еще один вид реактора разрабатывает канадская компания General Fusion. Он представляет собой сферу, внутри которой находится расплавленный свинец. К устройству подключены паровые молотки, которые синхронно бьют по сплаву. В металле есть небольшой желобок, в который загружают горячую смесь дейтерия и трития. При каждом ударе молотков происходит микровзрыв, который провоцирует термоядерную реакцию.

Индустрия 4.0

Что такое индустрия 4.0 и что нужно о ней знать

На что способен термоядерный реактор

Правительство Великобритании не так давно объявило, что оно инвестирует 220 миллионов фунтов стерлингов в проектирование термоядерной электростанции, а именно для создания сферического токамака. Токамак (или тороидальная камера с магнитными катушками) — это установка для магнитного удержания плазмы с целью достижения условий, необходимых для протекания управляемого термоядерного синтеза. Закончить проект планируется «не позднее, чем через 20 лет».

Однако чем так привлекательна термоядерная энергия? В первую очередь, огромной экономической выгодой, которую она может принести. Потенциально термоядерные реакторы могут вырабатывать очень много энергии при минимальных затратах «сырья». Конечно, пока еще ни одна экспериментальная термоядерная установка не смогла произвести больше энергии, чем потребляет, но несколько стран и частных компаний вкладывают значительные средства в эту технологию. Например, международный эксперимент ITER, в рамках которого на юге Франции строится экспериментальный термоядерный реактор. Как ожидается, проект будет завершен в 2035 году. В это же время в эксплуатацию должен войти Китайский термоядерный испытательный реактор. США также находятся в процессе строительства того, что они называют «самым передовым термоядерным реактором», который будет запущен в 2028 году.

Тем не менее, вполне возможно, что именно эксперты из Великобритании станут первыми, кто запустит реактор термоядерного синтеза. Прототип установки при этом уже функционирует и, как сообщается, «работает по назначению», хотя ему еще предстоит продемонстрировать истинный потенциал термоядерной энергии. Как французская и американская версии, предлагаемая британская термоядерная установка будет иметь уже упомянутый токамак — реактор, который использует магнитные поля для ограничения и сжатия ионизированных газов (или плазмы) дейтерия и трития в условиях сверхвысоких температур.

Токамак. Это, кончно, не британская установка, но выглядят все токамаки примерно одинаково.

Предлагаемый реактор в Великобритании будет името около 10 метров в поперечнике, что делает его одним из самых «компактных» проектов такого типа. Это направлено на экономию производственных затрат. Однако сдерживание температуры в меньшем пространстве приносит с собой еще больше технических проблем. Воссоздание условий термоядерного синтеза в столь ограниченном пространстве — чрезвычайно сложная задача. А что вы думаете по поводу термоядерной энергии? Расскажите об этом в нашем чате в Телеграм.

Пройдет, по крайней мере, несколько десятилетий, прежде чем станет ясно, насколько термоядерная энергия может быть полезна для человечества. В любом случае, хоть «термоядерная гонка» и началась, ученые, работающие на подобных проектах регулярно обмениваются знаниями и опытом, так что рано или поздно они добьются успеха. В этом нет почти никаких сомнений.

Атомная эра

По использованию в качестве источника энергии урана в мире существует резкая дифференциация. Всего сейчас работает 191 ядерная электростанция с 451 ядерным реактором (еще 60 реакторов находятся в стадии строительства). Из этого числа 100 реакторов построены в США и дают этой стране 20% электроэнергии. В России 36 реакторов дают почти пятую часть электроэнергии. Есть страны, в которых ядерная энергия — это треть энергии в ее общем балансе (Южная Корея, Финляндия). Имеются страны, где эта доля — почти половина всей энергии (Словакия, Украина). А вот в Китае и Индии доля ядерной энергии в общем балансе меньше 5%. Совсем не используется ядерная энергия в Австралии, в большинстве стран Южной и Центральной Америки и в многочисленных мелких государствах Океании. Опережает все страны по этому показателю Франция, в которой 58 ее ядерных реакторов производят 77% всей вырабатываемой в стране электроэнергии. Неслучайно статья в Википедии об экономике Франции начинается словами: «Франция — высокоразвитая страна, ядерная и космическая держава».

Отчасти это объясняется тем обстоятельством, что во Франции еще в 30-е годы прошлого века начали развиваться работы по ядерной физике. Ирен и Фредерик Жолио-Кюри (как и Энрико Ферми в Италии) стали нобелевскими лауреатами за получение новых изотопов («меченых атомов»). Но они не поняли, что в их опытах наблюдалась также реакция деления урана. Об этом догадались немецкие радиохимики и физики О. Ган, Ф. Штрассманн, Л. Мейтнер. Началась атомная эра. Энрико Ферми продолжал работы с ураном уже в США. Он изобрел и построил ядерный реактор, где в ноябре 1942 года впервые в мире была осуществлена цепная ядерная реакция деления урана. Но целью создания первых реакторов было не выработка электроэнергии, а получение плутония, искусственного трансуранового элемента, способного, как и уран, к взрывному осуществлению реакции деления.

После окончания войны и ужасных августовских событий 1945 года в Хиросиме и Нагасаки интересы многих физиков-ядерщиков сосредоточились на мирном использовании энергии деления. Их вдохновлял и запуск в 1954 году первой в мире ядерной электростанции в СССР. В реакторостроении Франция вскоре стала мировым лидером. Возможно, в этом немалую роль сыграли и почти полное отсутствие во Франции секретности ядерных исследований, и большой интерес к этим исследованиям французского правительства. На юге Франции, в маленьком городке Кадараш в 60 километрах от Марселя был создан мощный научный центр ядерной физики.

И именно там, неподалеку от Кадараша, в 2006 году было намечено построить ИТЭР — международный термоядерный экспериментальный реактор. Огромную строительную площадку размером с 400 футбольных полей было решено создать в лесном массиве, поскольку вся безлесная сельскохозяйственная округа была арендована частными владельцами. Первое дерево было срублено 29 января 2007 года. Но перед этим несколько лет уточнялись научные предпосылки строительства реактора и почти пять лет разрабатывался технический проект сооружения. Много времени ушло и на организацию финансирования проекта и создание управляющих органов. Первоначально планировалось запустить реактор в 2022 году и затратить 5 миллиардов долларов. Но в 2012 году проект был пересмотрен, сроком окончания строительства был намечен 2025 год, а предполагаемая сумма затрат возросла до 20 миллиардов долларов. Сейчас пройдена половина дистанции, и панорама строительства поражает воображение.

Кто же затеял и осуществил проект этой грандиозной стройки, поистине «стройки ХХI века»? Как возникла система финансирования и изготовления многочисленных узлов и агрегатов будущего реактора?

Обыкновенное чудо

Весь ИТЭР размером с маленький городок, примерно километр в диаметре, и каждый его метр начинен самым дорогим и надежным оборудованием. Недавно над реактором появилась крыша. Александр Владимирович показывает фотографию реактора, где на одном из этажей можно видеть крошечного человека. Точнее, увидеть-то его как раз нельзя, если заранее не знать, что он там стоит. Даже для не очень подробного описания всех деталей реактора понадобилась бы целая книга, поэтому широкому читателю для общего понимания можно пояснить, что ИТЭР — это гигантский водонагреватель. При термоядерной реакции выделяется главный носитель энергии — нейтрон, который нагревает носитель, а с этого носителя тепло уже забирает вода, поступающая в турбину, которая превращает энергию в электрическую. А самой плазме энергия придается альфа-частицами, которые выделяются при термоядерной реакции внутри нее же (плазмы). Собственно, термоядерная реакция и представляет собой горение очень разреженной (менее 1%) смеси газов, во время горения которой выделяются нейтроны и альфа-частицы. Плазме для поддержания горения не нужен внешний источник энергии: начиная с определенного коэффициента передачи энергии (q = 10), этот процесс становится циклическим, и она превращается в вечный двигатель.

Главная задача проекта ИТЭР — продемонстрировать длительное горение в стационарном импульсе. И решение этой задачи, с одной стороны, похоже на чудо, с другой — современной физике плазмы пока неизвестно, что может помешать этому чуду свершиться после стольких лет исследований и экспериментов.

Пока проект носит научный экспериментальный характер, поэтому им занимаются совместно многие страны. Когда из аббревиатуры исчезнет буква «Э» — «экспериментальный», создание реально работающего образца для нужд экономики станет задачей для каждой отдельно взятой страны. Наиболее крупные установки термоядерной энергии были созданы в Европе (Jet) и в Японии (JT-60). Свои небольшие ТОКАМАКи есть и в России, Корее, Китае, Индии, и в каждой из стран-участников международного проекта ИТЭР. И в каждой из перечисленных стран действует своя национальная программа развития атомной энергии, поскольку от практической готовности воспринять результат международного проекта напрямую зависят реализация и ее экономический эффект для этих государств.

Сроки запуска реактора за все эти годы много раз сдвигались, а суммы необходимых вложений увеличивались в разы. Изначально планировалась сумма €5 млрд, затем — €19 млрд. Тем не менее никто из стран-участников не только не отказался от реализации проекта мечты, но участников еще прибавилось: их ряды пополнил Казахстан. Никакие эпидемии вирусов, никакие санкции не остановили реализацию проекта. Самые большие поставки во Францию из российских институтов — у НИИ ЭФА им. Д. В. Ефремова. Оттуда через пять границ в самый разгар пандемии, когда везде действовал запрет на любые поставки, на грузовиках к реактору везли изготовленное оборудование по специальному разрешению от ЕС. Это были единственные работы, которые в общих интересах нельзя было останавливать.

Риски ИТЭР

В настоящее время ИТЭР находится на полпути к своей первоначальной цели циркуляции плазмы.

Разработчики постоянно работают над прогнозированием и смягчением рисков, которые могут привести к дополнительным задержкам или затратам.

Конечной целью, конечно, является не просто циркулирующая плазма, но и плавление дейтерия и трития для создания “горящей” плазмы, которая генерирует значительно больше энергии, чем поступает в нее. Токамак ИТЭР должен генерировать 500 мегаватт электроэнергии, в то время как коммерческие термоядерные установки будут размещать более крупные реакторы, чтобы генерировать от 10 до 15 раз больше энергии. Согласно планам, 2000-мегаваттный термоядерный завод поставит 2 миллиона домов электричеством..

Если проект окажется успешным, ученые ИТЭР предсказывают, что термоядерные электростанции могут начать выходить в эксплуатацию уже к 2040 году по производству 2 гигаватт и более. Капитальные затраты на строительство АЭС должны быть аналогичны капитальным затратам нынешних АЭС ― около 5 миллиардов долларов за гигаватт. В то же время термоядерные электростанции просто используют дейтерий и тритий, и поэтому избегают “затрат на добычу и обогащение урана, или затрат на уход за радиоактивными отходами и их утилизацию.

Строительство атомной станции синтеза стоит больше, чем строительство станции ископаемого топлива. Цены на ископаемое топливо очень высоки, а расходы на топливо для синтеза незначительны, так что в течение срока службы электростанции расходы будут незначительны.

В то же время ископаемое топливо обходится дорого не только из-за финансовых значений. Огромные затраты на ископаемое топливо связаны с воздействием на окружающую среду, будь то из-за добычи полезных ископаемых, загрязнения окружающей среды или выброса парниковых газов. Синтез углерода – бесплатен.

Структура комплекса ИТЕР

Вышеописанная «в двух словах» конструкция токамака представляет собой сложнейший инновационный механизм, собираемый усилиями нескольких стран. Однако, для ее полноценной работы требуется целый комплекс построек, расположенных вблизи токамака. В их числе:

  • Система управления, связи и доступа к данным (Control, Data Access and Communication) – CODAC. Находится в ряде зданий комплекса ИТЕР.
  • Хранилища топлива и топливная система – служит для доставки топлива в токамак.
  • Вакуумная система – состоит из более чем четырехсот вакуумных насосов, задача которых – выкачка продуктов термоядерной реакции, а также различных загрязнений из вакуумной камеры.
  • Криогенная система – представлена азотным и гелиевым контуром. Гелиевый контур будет нормализировать температуру в токамаке, работа (а значит и температура) которого протекает не непрерывно, а импульсно. Азотный контур будет охлаждать тепловые экраны криостата и сам гелиевый контур. Также будет присутствовать водяная система охлаждения, которая направлена на понижение температуры стенок бланкета.
  • Электропитание. Токамаку потребуется примерно 110 МВт энергии для постоянной работы. Для этого будут проведены линии электропередач в километр, которые будут подключены к французской промышленной сети. Стоит напомнить, что экспериментальная установка ИТЭР – не предусматривает выработку энергии, а работает лишь в научных интересах.

Элементы комплекса ИТЭР

Концептуальный проект

Термоядерный синтез, та же реакция, которая происходит в центре Солнца, соединяются атомные ядра, чтобы сформировать более тяжелые ядра. Термоядерный синтез генерирует гораздо больше поток энергии, чем сжигание ископаемого топлива.

Например, в количестве атомов водорода размером с ананас находится столько же энергии, сколько в 10 000 тонн угля, в соответствии с заявлением по проекту международного термоядерного реактора.

В отличие от ядерного деления которое разбивает большие атомы на более мелкие этот термоядерный реактор не будет производить высокий уровень радиоактивных отходов. И в отличие от установок по производству ископаемого топлива, термоядерная энергия слияния не генерирует парниковых газов, углекислого газа или других загрязнителей.

Ядерное деление

В термоядерном реакторе выделяется энергия при синтезе лёгких ядер (водорода, гелия и лития). Чтоб два ядра водорода (на практике – дейтерия и/или трития, то есть изотопов водорода) сошлись на достаточно близкое расстояние, чтобы преодолеть кулоновское отталкивание одноименно заряженных ядер, необходимо создать либо огромное давление, либо крайне высокую температуру.

В термоядерном реакторе нет ничего самопроизвольного, поэтому он безопаснее.  Любое неконтролируемое повреждение и исчезают условия, необходимые для термоядерного синтеза.

Термоядерный синтез

Атомный термоядерный реактор использует сверхпроводящие магниты для плавления атомов водорода и получения большого количества тепла. Будущие атомные термоядерные электростанции могут затем использовать эту теплоту для привода турбин и выработки электроэнергии.

Экспериментальный реактор не будет использовать обычные атомы водорода, ядра которых состоят из одного протона. Вместо этого он будет взрывать дейтерий, ядра которого имеют один протон и один нейтрон, с тритием, ядра которых имеют один протон и два нейтрона. Дейтерий легко извлекается из морской воды, а тритий будет сгенерирован внутри термоядерного реактора. Поставки этих видов топлива достаточно велики, достаточно на миллионы лет при нынешнем глобальном потреблении энергии.

И в отличие от реакторов деления, термоядерное синтезирование является очень безопасным: если реакции термоядерного синтеза нарушаются в пределах завода по термоядерному синтезу, термоядерные реакторы просто отключаются безопасно и без необходимости внешней помощи, отметил проект ITER. Теоретически, плавильные установки также используют только несколько граммов топлива одновременно, поэтому нет возможности аварии расплава.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector