Что такое фугас? какого типа бывают фугасные снаряды

Опасность эскалации

Также по теме


Атомное искушение: как испытания американской бомбы B61-12 увеличивают вероятность ядерного конфликта

В начале августа 2017 года Соединённые Штаты провели два испытания атомной бомбы B61-12 без ядерного снаряда. Об этом сообщило…

Помимо перечисленного, на вооружении США находится противобункерная ядерная бомба B-61-11. Её мощность чуть меньше, чем у бомбы, взорванной над Хиросимой, — до 10 килотонн. Также ведутся работы над ядерной бомбой B-61-12 управляемой мощности, которая должна, по мнению американцев, преодолеть основной недостаток ядерных бомб — слишком большую силу взрыва, ведущую к многочисленным потерям среди гражданских лиц. B-61-12 будет менее разрушительной, чем её предшественники, но гораздо сильнее и, главное, компактнее самых мощных конвенциональных бомб.

«Очень опасные иллюзии испытывают и американские генералы, и политический истеблишмент США, — отмечает Иван Коновалов. — Испытали демонстративно GBU-57, демонстративно перебросили на Гуам B-2, провели испытание 12-й модификации B-61, меняют ядерную доктрину (речь идёт об установке маломощных зарядов на стратегических ядерных подлодках. — RT). Очевидно, люди полагают, что есть возможность с помощью тактического маломощного ядерного оружия добиться решающих результатов на войне».

«Что будет потом, американцы не просчитывают, а потом будет катастрофа», — отмечает Коновалов. 

Немного теории[править]

Взрывчатые вещества подразделяются на метательные (например, порох) и бризантные. У бризантной взрывчатки, в свою очередь, есть два параметра: фугасность (толкающее действие расширяющимися газами) и собственно бризантность (дробящее действие в непосредственной близости). И то, и другое измеряется в условных единицах: бризантность — миллиметры расплющивания свинцового цилиндра, фугасность — кубические сантиметры раздувания свинцовой бомбы. Если бризантность высока, фугасность обычно тоже, обратное неверно: бризантное действие топливовоздушной смеси, лучшего химического фугаса, нулевое. «Папа всех бомб», попавший в прочный дот, уничтожит всё, что внутри, а стены будут… ну, слегка подкопчённые (ну а непрочный домик сметёт до фундамента). Для большинства артиллерийских задач главное — фугасное действие, а бризантность — просто приятный бонус на случай прямого попадания. (Есть и специальные снаряды: бетонобойные как раз бризантные, противотанковые — кинетические или кумулятивные, зенитные — осколочные.)

А вот диверсант, заложивший кирпичик взрывчатки на рельс или балку, рассчитывает на бризантность. В этом случае взрывчатки нужно в разы меньше, однако надо знать, где её прикрепить. Если положить такой заряд около стены, он в лучшем случае проделает дыру, не вызвав обрушения. И осколки лучше получаются, если взрывчатка будет бризантная: террорист, готовящий метательное вещество в скороварке, вынужден иметь его килограммы, чтобы повторить то, что делают 100 г ТНТ или гексогена в обычной «лимонке».

Лимонка, кстати, тоже убивает осколками, потому никого никуда не отбросит. Взрывчатки в современной гранате ≈100 г, и внешне её взрыв ничем не примечателен: разве что много чёрного дыма и подброшенной в воздух земли. Самое главное — те самые осколки — не видно.

Специальные артиллерийские снаряды мы упомянули, а «самый простой» забыли. Называется он «осколочно-фугасный снаряд»: фугасное действие ТНТ и осколки как бонус. Снаряд можно устанавливать «на осколочный» и «на фугасный»: в первом случае он взрывается сразу, чтобы осколки не ушли в землю, во втором — с задержкой, чтобы проник внутрь лёгкого укрепления и разворотил его.

В общем, авторы путают действие снаряда (фугасное, бризантное, кумулятивное, кинетическое, осколочное), хотят сгустить краски, да и геймплей превыше всего — это и приводит к мегафугасу.

А как им не путать, если в Справочнике автора нет статьи о действии взрывчатки?

6 уровень

КВ-2

Очень опасный танк в боях на шестом и седьмом уровнях. Благодаря орудию 152 мм М-10
, которое в народе получило прозвище «шайтан-труба», КВ-2
может наносить 683-1138 единиц урона, но только при условии пробития фугасом брони. Если же вам противостоит толстошкурый танк, то имеет смысл попробовать бронебойные или кумулятивные снаряды.

В отличие от своего предшественника, КВ-2
имеет внушительный корпус и массивную башню, а это значит, что спрятаться на нем довольно непросто. Старайтесь избегать открытой местности и держитесь ближе к городским постройкам, где можно будет вылавливать врагов на узких улочках. Причина очевидна: с точностью у этого танка беда, стрельба по дальним мишеням — лишь напрасная трата снарядов. Городские строения также пригодятся для отступления на перезарядку, которая длится примерно четверть минуты.

Артиллерия С-51
(максимальный урон 1388-2313 единиц)

С-51
или «буратино» почти всегда желанная артиллерия в чемпионских ротах. Пусть скорострельность у этой САУ самая низкая на шестом уровне, зато с «топовым» орудием 203 мм Б-4
она наносит фугасами 1388-2313 единиц урона при удачном попадании.

По сравнению со своим коллегой СУ-14
, эта артиллерия гораздо подвижнее, что позволяет ей вовремя менять позицию при угрозе обнаружения.

Таким же уроном обладает СУ-14
.

Авиабомбы, особенности их конструкции и классификация

Авиационная бомба – это тип боеприпаса, который состоит из корпуса, стабилизатора, снаряжения и одного или нескольких взрывателей. Чаще всего корпус имеет овально-цилиндрическую форму с конической хвостовой частью. Корпуса осколочных, фугасных и осколочно-фугасных авиационных бомб (ОФАБ) изготовлены таким образом, чтобы при взрыве давать максимальное количество осколков. В донной и носовой частях корпуса обычно находятся специальные стаканы для установки взрывателей, некоторые виды бомб имеют и боковые взрыватели.

Взрывчатые вещества, которые используются в авиационных бомбах, весьма различны. Чаще всего это тротил или его сплавы с гексогеном, аммонийная селитра и др. В зажигательных боеприпасах боевая часть заполнена зажигательными составами или горючими жидкостями.

Для подвески на корпусе авиабомб имеются специальные ушки, исключения составляют боеприпасы малого калибра, которые размещаются в кассетах или связках.

Стабилизатор предназначен для обеспечения устойчивого полета боеприпаса, уверенного срабатывания взрывателя и более эффективного поражения цели. Стабилизаторы современных авиабомб могут иметь сложную конструкцию: коробчатую, перистую или цилиндрическую. Авиабомбы, которые применяются с малых высот, часто имеют зонтичные стабилизаторы, раскрывающиеся сразу после сброса. Их задача – замедлить полет боеприпаса, чтобы дать возможность летательному аппарату отойти на безопасное расстояние от точки взрыва.

Современные авиационные бомбы оснащаются разными типами взрывателей: ударного действия, неконтактные, дистанционные и др.

  • основные;
  • вспомогательные.

Основные авиационные бомбы предназначены для непосредственного поражения различных целей.

Вспомогательные способствуют решению той или иной боевой задачи или же они используются при подготовке войск. К ним относятся осветительные, дымовые, агитационные, сигнальные, ориентирно-морские, учебные и имитационные.

Основные авиационные бомбы можно разделить по типу поражающего воздействия, которое они наносят:

  1. Обычные. К ним относятся боеприпасы, начиненные обычным взрывчатыми или зажигательными веществами. Поражения целей происходит за счет взрывной волны, осколков, высокой температуры.
  2. Химические. К этой категории авиационных авиабомб относятся боеприпасы, начиненные химическими отравляющими веществами. Химические бомбы никогда масштабно не применялись.
  3. Бактериологические. Начинены биологическими возбудителями различных заболеваний или же их носителями и также никогда не использовались масштабно.
  4. Ядерные. Имеют ядерную или термоядерную боевую часть, поражение происходит за счет ударной волны, светового излучения, радиации, электромагнитной волны.

  • фугасными;
  • осколочно-фугасными;
  • осколочными;
  • фугасными проникающими (имеют толстый корпус);
  • бетонобойными;
  • бронебойными;
  • зажигательными;
  • фугасно-зажигательными;
  • отравляющими;
  • объемно-детонирующими;
  • осколочно-отравляющими.

Это список можно продолжить.

К основным характеристикам авиабомб относятся: калибр, показатели эффективности, коэффициент наполнения, характеристическое время и диапазон условий боевого применения.

Одной из главных характеристик любой авиабомбы является ее калибр. Это масса боеприпаса в килограммах. Довольно условно бомбы делятся на боеприпасы малого, среднего и крупного калибра. К какой именно группе относится та или иная авиабомба во многом зависит от ее типа. Так, например, стокилограммовая фугасная бомба относится к малому калибру, а ее осколочный или зажигательный аналог – к среднему.

Коэффициент наполнения – это отношение массы взрывчатого вещества бомбы к ее общему весу. У тонкостенных фугасных боеприпасов он выше (примерно 0,7), а у толстостенных – осколочных и бетонобойных бомб – ниже (примерно 0,1-0,2).

Характеристическое время – параметр, который связан с баллистическими свойствами бомбы. Это время ее падения при сбросе с летательного аппарата, летящего горизонтально со скоростью 40 м/с, с высоты 2 тыс. метров.

Ожидаемая эффективность также довольно условный параметр авиационных бомб. Он отличается для разных типов этих боеприпасов. Оценка может быть связана с размером воронки, количеством очагов пожаров, толщиной пробитой брони, площадью зоны поражения и др.

Диапазон условий боевого применения показывает характеристики, на которых возможно проведение бомбометания: максимальную и минимальную скорость, высоту.

Перспективные разработки

В данный момент фугасы направленного действия вытесняются осколочно-фугасными снарядами. Это связано в основном с воздействием на объекты, так как ОФС имеет больший эффект поражения. Американские военные инженеры ведут разработку новых 40, 60, 81 и 120 мм ОФС, которые могли бы использоваться не только крупнокалиберной артиллерией, но и мобильными минометами.

Новые фугасные боеприпасы, поражающие факторы которых усовершенствованы, будут иметь более легкий вес за счет замены металлической оболочки на полимерную. По заявлению американских ученых, новая оболочка будет не только минимально загрязнять окружающую среду, но и служить уникальным удобрением для почвы и растений.

Ученые агентства перспективных разработок DARPA ведут работы по созданию высокоманевренных управляемых боеприпасов воздушного базирования. Фугасная ракета будет обладать большой скоростью, маневренностью и высокой степенью поражения объектов.

Принцип действия


Фугас (фото строения заряда) Фугасный снаряд, принцип действия которого описывался выше, имеет большую область применения. Но в боевых условиях их чаще всего используют для разрушения укрепленных сооружений и живой силы противника. Фугасные снаряды используют артиллерийские установки разных калибров, в основном это 120 и 152 мм.

После попадания по целям возникает мощное фугасное действие боеприпасов, сопровождающееся взрывной волной. Другими словами происходит высвобождение газообразных продуктов за счет взрывчатого вещества, которое после детонации образуют зону высокой температуры, взрывную волну и большой радиус разлета осколков снаряда.

Принцип действия фугасного снаряда заключается в мощности взрыва, способного одним попаданием уничтожить цель полностью

Взрыв фугасного снаряда

Сила и мощность взрыва зависит от высвобожденных газообразных продуктов. Это делает достаточно сложным определение точных параметров. Поэтому все имевшиеся данные о параметрах взрывной силы и радиусе поражения фугасных снарядов полностью условные.

Основным преимуществом данного снаряда является возможность увеличения параметров за счет увеличения взрывчатых веществ и не влияние на это калибра используемого орудия.


105 мм бронебойно-фугасный снаряд

К примеру, бронебойно-фугасные снаряды имеют небольшие калибры, но за счет высокого содержания ВВ, бронепробития и тонких стенок снаряда, имея свойство пластичности они проникают глубоко под броню и после детонации образуют большое разрушение и воздействие непосредственно на внутреннюю часть бронированной техники, что приводит к полному выводу ее из строя. В случае, когда броня не была пробита, на внутренней стороне образуются сколы.

Химия и физика взрыва

Но всё же главной поражающей силой осколочно-фугасной гранаты является заключённое в ней взрывчатое вещество бризантного типа. После отработки заданной установкой задержки взрыватель срабатывает и по материалу взрывчатого вещества со скоростью около 6,7—7 км/с пробегает волна детонации — с физико-химической точки зрения комбинация из «обычной» сверхзвуковой ударной волны и инициированного ей фронта экзотермической химической реакции. По своей сути молекула тринитротолуола является метастабильным образованием с уже находящимися в её составе тремя нитрогруппами NO2, которые аккумулируют в себе значительную долю энергии и способны выделять активный кислород в окислительно-восстановительных реакциях. Проходящая при детонации тринитротолуола химическая реакция может быть записана в виде:

2 C7H5N3O6 → 3 N2 + 5 H2O + 7 CO + 7 C

Как видно из формулы, в числе газообразных её продуктов присутствуют азот, вода и угарный газ. Малое содержание кислорода в молекуле тринитротолуола приводит к недостаточному окислению углерода (отсюда наличие угарного газа и сажи), поэтому очень часто в снаряжении осколочно-фугасных снарядов (ОФ-350 не исключение) используется аммотол — смесь тринитротолуола с нитратом натрия HNO3 (натриевой селитрой). Дополнительный кислород позволяет окислить углерод полностью и получить больше газообразных продуктов реакции. Но даже и без этого тринитротолуол является мощным взрывчатым веществом. Сделаем некоторые количественные оценки применительно к нашему случаю. 6 кг тринитротолуола при плотности 1,6 г/см³ занимают объём 3750 см³ (такой объём как раз имеет куб со стороной 15,3 см — весьма близко к калибру ОФ-530, хотя в действительности её камора имеет бутылкообразную, но без горлышка, осесимметричную форму). Молярная масса тринитротолуола составляет 0,227 кг/моль, таким образом количество тринитротолуола в каморе составляет 26,4 моль. Теперь воспользуемся химической формулой реакции и увидим, что каждые два моля тринитротолуола после детонации дают 3 моля азота, 5 молей водяного пара и 7 молей угарного газа. Как известно из химии, каждый моль газа при нормальных условиях занимает объём в 22,4 литра. В итоге 6 кг тринитротолуола порождают 39,6 молей азота, 66 молей водяного пара и 92,4 моля угарного газа, которые все вместе займут 4435 литров объёма при нормальных условиях. 1 литр равен 1 кубическому дециметру, т. е. 1000 см³. Посмотрим, насколько наша теоретическая оценка отклонилась от опытных данных — известно, что 1 кг тринитротолуола порождает 975 литров результирующих газов при нормальных условиях, т. е. 6 кг дадут 5850 л. Оценка оказалась с ошибкой порядка 20—25% вследствие условности, принятой в формуле химической реакции. Известно, что процесс самоокисления тринитротолуола более сложен, в его выходных продуктах есть также и газообразные оксиды азота, и углеводороды. Но в итоге образовавшиеся после детонации газы оказались зажатыми в объёме, который в 1560 раза меньше нужного, да ещё и нагретыми до температуры порядка 3700 °С. Используя известное из физики уравнение состояние идеального газа:

p1 × V1 / T1 = p2 × V2 / T2

можно рассчитать их давление на стенки гранаты: p1 = 100 кПа, V1 = 5850 л, T1 = 288 K (15°С), V2 = 3,75 л, T2 = 3700 K. В итоге p2 ≈ 2004000 кПа ≈ 20 тыс. атм. А поскольку сильно сжатый газ далеко не идеален, то относительно реальной ситуации оценка оказалась на порядок заниженной: опыт даёт давление при разрыве заряда тринитротолуола давление в 10 раз большее — 200 тыс. атм. Такого давления корпус гранаты не выдерживает, боеприпас прекращает своё существование как единое тело и представляет собой осколки корпуса и плотный сгусток горячих газов, который стремится расшириться в своём объёме и прийти к термодинамическому равновесию с окружающей средой.

Фугасы в настоящее время

В настоящее время в артиллерии средних калибров фугасные снаряды почти полностью вытеснены осколочно-фугасными, значительно упрощающими боевое снабжение артиллерии.

Старые фугасные снаряды сохранились лишь на вооружении, производство же фугасных снарядов средних калибров прекращено почти во всех странах.

Для снаряжения фугасных снарядов наземной артиллерии в мирное время идет почти исключительно тротил и реже мелинит, а в военное время неизбежно применение суррогатных взрывчатых веществ.

Фугасные снаряды германской авиационной артиллерии снаряжались главным образом тэном и реже тротилом.

Инженерный боеприпас[ | ]

Фугас как инженерный боеприпас — это заряд взрывчатого вещества, закладываемый в земле или под водой на небольшой глубине, взрываемый внезапно для нанесения урона противнику или задержания его продвижения. При подрыве фугаса цель поражается ударной волной, осколками и продуктами взрыва.

Подрыв взрывчатого вещества производится электрическим, огневым или механическим способами. При огневом способе обычно необходимо использовать детонаторы, огнепроводный шнур или . При электрическом способе используются электродетонаторы, в которых необходимая начальная температура индукции воспламенения достигается за счёт тепловой энергии электроискры или спирали и начального заряда инициирующего взрывчатого вещества.

Конструкция

Фугасные снаряды обладают наиболее тонкостенными оболочками, высоким коэффициентом наполнения, высокой относительной массой разрывного заряда и малой относительной массой снаряда.

По конструктивному оформлению фугасные снаряды наземной артиллерии средних калибров бывают цельнокорпусными, с привинтной головкой или ввинтным дном и очком под головной взрыватель, а снаряды крупных калибров — со сплошной головной частью, ввинтным дном и очком под донный взрыватель или с привинтной головкой и ввинтным дном и очком под головной взрыватель. Снаряды крупных калибров, кроме того, могут иметь два очка: под головной и донный взрыватели; применением двух взрывателей обеспечиваются безотказность действия и полнота разрыва снаряда.

Малокалиберные фугасные снаряды в авиационной артиллерии впервые были применены немцами в 20- и 30-мм авиационных пушках во время Второй мировой войны. Корпус 20-мм снаряда тонкостенный, штампованный, с выдавленными на нём канавками для ведущего пояска и кернения дульца гильзы. Дно корпуса для повышения прочности при выстреле делается полусферической формы. Центрующих утолщений на корпусе нет, и центрование снаряда в канале ствола производится центрующим утолщением на взрывателе и ведущим пояском. Взрыватель соединяется со снарядом при помощи переходной втулки, закрепленной в корпусе.

Необходимая прочность таких снарядов при выстреле достигалась за счет применения корпуса из металла с высокими механическими свойствами[источник не указан 1036 дней] и его термической обработки.

Появление в 1940-х годах в малокалиберной авиационной артиллерии фугасных снарядов объясняется повышенным поражающим действием этих снарядов по сравнению с осколочными ввиду малой чувствительности современных самолетов к поражению осколками[источник не указан 1036 дней]. Поэтому следует считать целесообразным[когда?] всемерное повышение фугасности малокалиберных осколочных снарядов зенитной и авиационной артиллерии. Применение фугасных снарядов в наземной артиллерии целесообразно лишь в орудиях калибра от 120 мм и выше, так как незначительный вес разрывного заряда снарядов меньшего калибра не обеспечивает разрушения даже самых лёгких полевых укрытий[источник не указан 1036 дней].

Фугасный снаряд. Принцип действия

Основная область применения боеприпасов фугасного действия — это разрушение строений и сооружений, укрытий и убежищ для живой силы. В полевых и боевых условиях – это, как правило, окопы и блиндажи, кирпичные и деревянные сооружения и строения. Артиллерийские фугасные снаряды чаще всего используются в качестве огневого инженерно-технического средства, используемого артиллерийскими системами крупного калибра. При попадании снаряда в цель, в результате подрыва взрывчатки, возникает фугасное действие на предметы. Мощность воздействия боеприпаса на предметы определяется фугасностью заряда. Фугасность характеризует способность взрывчатки за короткий временной период создать определенное количество продуктов взрыва, способных оказать разрушающее действие.

Ударная волна

Фугасное действие

Следует учитывать, что фугасность заряда может быть различной. Мера фугасности каждого боеприпаса зависит от потенциала взрывчатого вещества (ВВ) и удельной энергией, выделяемой им в момент взрыва. Работоспособность у взрывчатых веществ, используемых для начинки боеприпасов, может быть различной. На силу и мощность взрыва оказывают влияние удельный объем и состав газообразных продуктов в результате детонации ВВ. Точно определить фактическую работоспособность того или иного взрывчатого вещества достаточно трудно, поэтому фугасность определенного заряда ВВ принято выражать в относительных единицах. Как правило, фугасное действие взрывчатки сравнивается с результатом действия определенного количества тротила. Полученный в результате взрыва удельный объем продуктов измеряется в тротиловом эквиваленте.

Исходя из этих данных, можно сделать вывод. Могущество фугасного снаряда определяется количеством и типом взрывчатого вещества. Увеличение количества ВВ приводит к увеличению калибра боеприпаса. Более мощные взрывчатые вещества позволяют добиться необходимого поражающего эффекта, не увеличивая калибр снаряда. К примеру, для бронебойно-фугасных противотанковых снарядов главное — не калибр, а определенный поражающий эффект. За счет большой пробивной способности такие снаряды могут проникать глубоко в броню, после чего фугасный заряд приводит к ее дальнейшему разрушению.

Бронебойные снаряды

Инженерный боеприпас

Фугас как инженерный боеприпас — это заряд взрывчатого вещества, закладываемый в земле или под водой на небольшой глубине, взрываемый внезапно для нанесения урона противнику или задержания его продвижения. При подрыве фугаса цель поражается ударной волной, осколками и продуктами взрыва.

Подрыв взрывчатого вещества производится электрическим, огневым или механическим способами. При огневом способе обычно необходимо использовать детонаторы, огнепроводный шнур или зажигательные трубки. При электрическом способе используются электродетонаторы, в которых необходимая начальная температура индукции воспламенения достигается за счёт тепловой энергии электроискры или спирали и начального заряда инициирующего взрывчатого вещества.

Коренной перелом

При большой массе действенность фугасных противотанковых гранат скоро перестала соответствовать их основному назначению. Но взамен пехота получила кумулятивные гранаты.

Исследования кумулятивного (от позднелатинского cumulatio – накопление, концентрация) эффекта «полых зарядов» велись еще во второй половине XIX века. В России направленное действие взрыва при наличии выемки в заряде взрывчатого вещества в 1865 году открыл военный инженер М. М. Боресков, в Германии – М. Фестер в 1883-м. Однако в последней этот эффект больше известен как эффект Неймана (Е. Нейман опубликовал свои работы в 1914-м, а в англоязычном мире – как эффект Мунро, по имени американца Ч. Мунро (или Монро), обнародовавшего свои исследования в 1888 году.

Долгое время данному эффекту не уделяли внимания как способу получения нового типа бронебойного снаряда. Он больше интересовал инженеров-строителей. Так, в СССР исследование практического применения кумулятивных зарядов в строительном деле провел в 20-е годы М. Я. Сухаревский. К началу Второй мировой войны были разработаны образцы инженерных кумулятивных зарядов для поражения бетонных и броневых колпаков. Кумулятивными зарядами активно занимались и в других странах – уже имелись, например, сведения о германских кумулятивных снарядах, получивших тогда у нас не совсем правильное название бронепрожигающих. В сентябре 1941-го по инициативе Научно-технического совета по координации и усилению научных исследований в области химии при Государственном Комитете Обороны (ГКО) начались систематические работы по использованию эффекта кумуляции энергии взрыва для создания противотанковых боеприпасов. Уже в октябре 1941 года в НИИ-6 Наркомата боеприпасов прошли испытания кумулятивных зарядов.

Артиллерийский снаряд

Фугасные снаряды в основном предназначаются для стрельбы по небетонированным оборонительным сооружениям: окопам, деревоземляным (ДЗОТам) и деревокаменным огневым точкам, наблюдательным пунктам и т. п. Кроме того, фугасные снаряды крупных калибров могут применяться совместно с бетонобойными снарядами для стрельбы по бетонированным оборонительным сооружениям — долговременным огневым точкам (ДОТам) — главным образом для снятия земляной насыпи с последних. Стрельба на рикошетах фугасными снарядами может с успехом применяться для проделывания проходов в минных полях.

При отсутствии осколочных и осколочно-фугасных снарядов, фугасные снаряды могут применяться для стрельбы по открытым живым целям, а при отсутствии бронебойных снарядов — для стрельбы по танкам. В этих случаях действие фугасных снарядов будет значительно уступать действию заменяемых ими снарядов.

В авиационной артиллерии малокалиберные фугасные и фугасно-трассирующие снаряды применяются для стрельбы по самолетам.

Примечания

  1. Краткий словарь иностранных слов / составитель Локшина С.М.. — 8-е изд., стереотип. — М.: Русский язык, 1985. — С. 281. — 352 с.
  2. Фугас // Толковый словарь живого великорусского языка : в 4 т. / авт.-сост. В. И. Даль. — 2-е изд. — СПб. : Типография М. О. Вольфа, 1880—1882.
  3. ↑ Фугасы // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  4.  (недоступная ссылка). Дата обращения: 16 января 2021.
  5. ↑ Граната // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  6. Артиллерия // Военная энциклопедия :  / под ред. В. Ф. Новицкого … []. — СПб. ; [М.] : Тип. т-ва И. Д. Сытина, 1911—1915.
  7. Полевые фугасы // Военная энциклопедия :  / под ред. В. Ф. Новицкого … []. — СПб. ; [М.] : Тип. т-ва И. Д. Сытина, 1911—1915.
  8. Фугас // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  9. Фугас // Малый энциклопедический словарь Брокгауза и Ефрона : в 4 т. — СПб., 1907—1909.
  10. Камнемет // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Защита

Улучшения брони основных боевых танков снизили полезность кумулятивных боеголовок, сделав эффективные переносные кумулятивные ракеты тяжелее, хотя многие армии мира продолжают нести переносные кумулятивные ракетные пусковые установки для использования против транспортных средств и бункеров. Считается, что в необычных случаях запускаемые с плеча кумулятивные ракеты сбивали вертолеты США в Ираке.

Причина неэффективности кумулятивных боеприпасов против современных основных боевых танков частично может быть связана с использованием новых типов брони. Струя, создаваемая взрывом кумулятивного снаряда, должна находиться на определенном расстоянии от цели и не должна отклоняться. Реактивная броня пытается победить это с помощью направленного наружу взрыва под точкой удара, вызывая деформацию струи и, таким образом, значительно снижая проникающую способность. В качестве альтернативы композитная броня с керамикой разрушает струю гильзы быстрее, чем катаная гомогенная броневая сталь, предпочтительный материал при строительстве старых боевых бронированных машин .

Разнесенная броня и предкрылковая броня также предназначены для защиты от кумулятивных снарядов, защищая транспортные средства, вызывая преждевременную детонацию взрывчатого вещества на относительно безопасном расстоянии от основной брони транспортного средства. Некоторые защиты клетки работают, разрушая механизм ТЕПЛОВОГО снаряда.

Конструкция и принцип действия

Устройство бронебойно-фугасного снаряда

По своей конструкции бронебойно-фугасный снаряд в целом схож с обычным фугасным, однако в отличие от последнего имеет корпус со сравнительно тонкими стенками, рассчитанный на пластичную деформацию при встрече с преградой, и всегда только донный взрыватель. Заряд бронебойно-фугасного снаряда состоит из пластичного взрывчатого вещества и при встрече снаряда с преградой «растекается» по поверхности последней. Вопреки расхожему мифу, увеличение угла брони негативно сказывается на пробитии и заброневом действии бронебойно-фугасных снарядов, что можно увидеть, к примеру в документах по испытанию британского 120mm орудия L11.

После «растекания» заряда он подрывается донным взрывателем замедленного действия, создавая давление продуктов взрыва до нескольких десятков тонн на квадратный сантиметр брони, в течение 1—2 микросекунд падающее до атмосферного. В результате этого в броне образуется волна сжатия с плоским фронтом и скоростью распространения около 5000 м/с, при встрече с тыльной поверхностью брони отражающаяся и возвращающаяся как волна растяжения. В результате интерференции волн происходит разрушение тыльной поверхности брони и образование отколов, способных поразить внутреннее оборудование машины или членов экипажа. В некоторых случаях может происходить и сквозное пробитие брони в виде прокола, пролома или выбитой пробки, однако в большинстве случаев оно отсутствует. Помимо этого непосредственного действия, взрыв бронебойно-фугасного снаряда создаёт ударный импульс, действующий на броню танка и способный вывести из строя или сорвать с места внутреннее оборудование, либо нанести травмы членам экипажа.

Эффективность воздействия по бронецелям, в американских документах, оценивается как до 1.3 от калибра.

Сколы с внутренней стороны брони от воздействия на неё бронебойно-фугасных снарядов

Благодаря своему принципу действия, бронебойно-фугасный снаряд эффективен против гомогенной брони и, как и у кумулятивных снарядов, его действие мало зависит от скорости снаряда и, соответственно, дистанции стрельбы. В то же время, действие бронебойно-фугасного снаряда малоэффективно против комбинированной брони, плохо передающей волну взрыва между своими слоями, и практически неэффективно против разнесённой брони. Даже против обычной гомогенной брони эффективность заброневого действия бронебойно-фугасного снаряда может быть значительно снижена или даже сведена на нет установкой противоосколочного подбоя с внутренней стороны брони.

Ещё два недостатка бронебойно-фугасного снаряда вытекают из его конструктивных особенностей. Тонкостенный корпус снаряда вынуждает ограничивать его начальную скорость по сравнению с другими видами боеприпасов, в том числе кумулятивными, до менее чем 800 м/с. Это приводит к снижению настильности траектории и увеличению полётного времени, что резко уменьшает шансы поражения движущихся бронированных целей на реальных дистанциях боя. Второй недостаток связан с тем, что бронебойно-фугасный снаряд, несмотря на значительную массу заряда взрывчатого вещества, обладает сравнительно малым осколочным, так как его корпус имеет тонкие стенки, а его механические свойства рассчитаны прежде всего на деформацию, а не на эффективное образование осколков, как в специализированных осколочно-фугасных или многоцелевых кумулятивных снарядах. Соответственно, недостаточным оказывается действие снарядов против живой силы противника, что рассматривается как серьёзный недостаток бронебойно-кумулятивных снарядов, так как с отказом на подавляющем большинстве западных танков от осколочно-фугасных снарядов, роль последних в борьбе с живой силой ложится на кумулятивные или бронебойно-фугасные снаряды.

10 уровень

FV
215
b
(183)
(максимальный урон 1313-2188 единиц)

Нет ничего страшнее, чем встретиться лицом к лицу с заряженным FV
215
b
(183)
. От упоминания об этой ПТ-САУ даже «Маусы» прячутся в свои норы, ведь одним удачным залпом британский монстр способен ополовинить его здоровье. Представляете, что будет с остальными танками при попадании в них снаряда от FV
215
b
(183)
?

«Премиумные» снаряды выдают сумасшедший урон (1313-2188 единиц), но если обычно фугасы имеют очень низкую бронепробиваемость, то особые британские HESH-фугасы пробивают от 206 до 344 мм брони. Расплачиваться за это приходится отвратительной точностью и огромным временем перезарядки.

В целом, FV215b (183)
сильно отличается от своих одноклассников не только уроном, но и внешним видом. Эта ПТ-САУ имеет форму «тапка», то есть, башня расположена сзади корпуса, и чтобы аккуратно выглянуть из-за угла, вам придется показывать противнику всю свою огромную тушу. Так называемый «Обратный ромб» тут мало чем поможет, на бортах FV215b (183)
всего 50 мм брони.

5 уровень

КВ-1
(максимальный урон 338-563 единиц)

После разделения легендарного КВ
на два танка (КВ-1
и КВ-2
) обе новые машины заняли первые места на 5 и 6 уровнях рейтинга самой убойной техники в World of Tanks.

КВ-1
в «топовой» комплектации обладает хорошо бронированной компактной башней, которая позволяет ему безнаказанно вести огонь из-за укрытий и складок местности.

У этого танка широкий выбор орудий пятого и шестого уровня, но максимальным уроном (338-563 единиц) обладает лишь фугасница 122 мм У-11
. В такую пушку можно зарядить фугасы или кумулятивные «золотые» снаряды.

Осколочно-фугасные боеприпасы, несмотря на большой заявленный урон, принесут мало пользы если стрелять в крепкий лоб ПТ-САУ и тяжелых танков своего уровня, зато легкие танки и артиллерия буквально взрываются чуть ли не с первого попадания.

Таким же уроном обладает СУ-85
.

Артиллерия
M
41

Американская САУ пятого уровня славится тем, что помимо отличного урона, она обладает замечательными углами горизонтальной наводки и хорошей скорострельностью.

Также М41
может разгоняться до 56 км/ч, но из-за слабого движка на это требуется немало времени.

«Топовое» орудие 155
mm
Gun
M
1918
M
1
может стрелять двумя видами осколочно-фугасных снарядов — обычными и премиумными. У обоих видов боеприпасов одинаковый урон (713-1188 единиц), но «золотые» снаряды чуть лучше пробивают броню и при взрыве дальше разбрасывают свои осколки.

Таким же уроном обладают
Hummel

и
AMX

13

F

3

AM

.

Германские ружейные гранаты

Состояли на вооружении:

  •  осколочная ружейно-ручная;
  •  большая кумулятивная;
  • малая кумулятивная;
  •  агитационная;
  •  сигнальная.

Выстреливались холостым патроном из ружейного гранатомета. Снаряжались В В повышенной мощности (гексогеном и ТЭНом).

Определить по внешнему виду этого небольшого, но чрезвычайно опасного боеприпаса, прошел он канал ствола или нет — невозможно, так как при выстреле он почти не деформируется, а нарезы на пояске изготовлены на заводе. Ружейные гранаты имели частые отказы из-за несовершенства конструкции взрывателей, небольшой начальной скорости, падения в мягкий грунт, снег ит.д. В ружейных гранатах устанавливались самоликвидаторы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector