Работа двигателя ракеты: фото, характеристики, видео

Из истории данного вопроса

Ракетный двигатель – один из старейших видов двигателя, известных человечеству. Мы не можем точно ответить на вопрос, когда именно была изготовлена первая ракета. Есть предположение, что это сделали еще древние греки (деревянный голубь Архита Тарентского), но большинство историков считает родиной данного изобретения Китай. Это произошло примерно в III столетии нашей эры, вскоре после открытия пороха. Первоначально ракеты использовали для фейерверков и других развлечений. Пороховой ракетный двигатель был достаточно эффективен и прост в изготовлении.

Первая боевая ракета была разработана в 1556 году Конрадом Хаасом, который придумывал различные виды вооружений для императора Фердинанда I. Этого изобретателя можно назвать первым создателем теории ракетных двигателей, также он является автором идеи многоступенчатой ракеты – в трудах Хааса подробно описан механизм работы летательного аппарата, состоящего из двух ракет. Изыскания продолжил поляк Казимир Семенович, живший в середине XVII века. Однако все эти проекты так и остались на бумаге.

Практическое использование ракет началось только в XIX столетии. В 1805 году британский офицер Уильям Конгрив продемонстрировал пороховые ракеты, которые имели небывалую по тем временам мощность. Презентация произвела должное впечатление, и ракеты Конгрива были приняты на вооружение английской армии. Их главным преимуществом, по сравнению со ствольной артиллерией, была высокая мобильность и относительно небольшая стоимость, а основным недостатком – кучность огня, которая оставляла желать лучшего. К концу XIX века широкое распространение получили нарезные орудия, стрелявшие очень точно, поэтому ракеты были сняты с вооружения.

Примерно так использовались ракеты Конгрива. Современная реконструкция

В России данным вопросом занимался генерал Засядко. Он не только усовершенствовал ракеты Конгрива, но и первым предложил использовать их для полета в космос. В 1881 году российский изобретатель Кибальчич создал собственную теорию ракетных двигателей.

Огромный вклад в развитие этого направления техники внес еще один наш соотечественник – Константин Циолковский. Среди его идей жидкостный ракетный двигатель (ЖРД), работающий на смеси кислорода и водорода.

В начале прошлого столетия энтузиасты во многих странах мира занимались созданием жидкостного РД, первым добился успеха американский изобретатель Роберт Годдард. Его ракета, работающая на смеси бензина и жидкого кислорода, успешно стартовала в 1926 году.

Вторая мировая война стала периодом возвращения ракетного оружия. В 1941 году на вооружение Красной армии была принята установка залпового огня БМ-13 – знаменитая «Катюша», а в 1943 – немцы начали использование баллистической Фау-2 с жидкостным ракетным двигателем. Она была разработана под руководством  Вернера фон Брауна, который позже возглавил американскую космическую программу. Германией также было освоено производство КР Фау-1 с прямоточными реактивным мотором.

Ракета Фау-2. Немцы называли ее “оружие возмездия”. Правда, оно не слишком помогло Гитлеру

В разные годы предпринимались попытки создания ракетных двигателей, работающих за счет энергии ядерного распада (синтеза), но до практического применения подобных силовых установок дело так и не дошло. В 70-е годы в СССР и США началось использование электрических ракетных двигателей. Сегодня они применяются для коррекции орбит и курса космических аппаратов. В 70-е и 80-е годы были эксперименты с плазменными РД, считается, что они имеют хороший потенциал. Большие надежды связывают с ионными ракетными двигателями, использование которых теоретически может значительно ускорить космические аппараты.

Однако пока почти все эти технологии находятся в зачаточном состоянии, и основным транспортным средством покорителей космоса остается старая добрая «химическая» ракета. В настоящее время за титул «самый мощный ракетный двигатель в мире» соревнуется американский F-1, участвовавший в лунном проекте, и советский РД-170/171, который использовался в программе «Энергия-Буран».

[править] Принцип действия

Испытания ионного двигателя на ксеноне

Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии.

В существующих реализациях для поддержки работы двигателя используются солнечные батареи. Но для работы в дальнем космосе такой способ неприемлем. Поэтому уже сейчас для этих целей иногда используются ядерные установки.

Источником ионов служит газ, как правило это аргон или водород, бак с газом стоит в самом начале двигателя, оттуда газ подаётся в отсек ионизации, получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и выбрасывается в окружающую среду. Таким образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов, это электротермические двигатели, электростатические двигатели, сильноточные или магнитодинамические двигатели и импульсные двигатели. В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель. В ионизатор подается ксенон, который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.

Положительные ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против — 225 на внешней). В результате попадания ионов между сетками они разгоняются и выбрасываются в пространство, ускоряя корабль согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку, выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:

  • чтобы корпус корабля оставался нейтрально заряженным;
  • чтобы ионы, «нейтрализованные» таким образом, не притягивались обратно к кораблю.

Чтобы ионный двигатель работал — нужны всего 2 вещи: газ и электричество.

Недостаток двигателя в его нынешних реализациях — очень слабая тяга (порядка 50-100 миллиньютонов). Таким образом, нет возможности использовать ионный двигатель для старта с планеты, но, с другой стороны, в условиях невесомости, при достаточно долгой работе двигателя есть возможность разогнать космический аппарат до скоростей, недоступных сейчас никаким другим из существующих видов двигателей. Однако разрабатываются более совершенные и мощные типы электроракетных двигателей (холловский и магнитоплазмодинамический), превосходящие ионный двигатель по величине тяги и как следствие конечной скорости космического аппарата.

Химические ракетные двигатели (ХРД)

Этот тип двигателей на сегодняшний день является единственным, который массово используется для выведения в открытый космос космических аппаратов, кроме того, он нашел применение и в военной промышленности. Химические двигатели делятся на твердо- и жидкотопливные в зависимости от агрегатного состояния ракетного топлива.

Виды химических двигателей

История создания

Первыми ракетными двигателями были твердотопливные, а появились они несколько веков назад в Китае. С космосом их тогда мало что связывало, зато с их помощью можно было запускать военные ракеты. В качестве топлива использовался порошок, по составу напоминающий порох, только процентное соотношение его составляющих было изменено. В результате при окислении порошок не взрывался, а постепенно сгорал, выделяя тепло и создавая реактивную тягу. Такие двигатели с переменным успехом дорабатывались, совершенствовались и улучшались, но их удельный импульс все равно оставался малым, то есть конструкция была неэффективной и неэкономичной. Вскоре появились новые виды твердого топлива, позволяющие получить больший удельный импульс и развивать большую тягу. Над его созданием в первой половине ХХ века трудились ученые СССР, США и Европы. Уже во второй половине 40-х годов был разработан прототип современного топлива, используемого и сейчас.

Ракетный двигатель РД — 170 работает на жидком топливе и окислителе.

Жидкостные ракетные двигатели – это изобретение К.Э. Циолковского, который предложил их в качестве силового агрегата космической ракеты в 1903 году. В 20-х годах работы по созданию ЖРД начали проводиться в США, в 30-хх годах – в СССР. Уже к началу Второй мировой войны были созданы первые экспериментальные образцы, а после ее окончания ЖРД стали выпускаться серийно. Использовались они в военной промышленности для оснащения баллистических ракет. В 1957 году впервые в истории человечества был запущен советский искусственный спутник. Для его запуска использовалась ракета, оснащенная РЖД.

Устройство и принцип работы химических ракетных двигателей

Твердотопливный двигатель вмещает в своем корпусе топливо и окислитель в твердом агрегатном состоянии, причем контейнер с топливом – это одновременно и камера сгорания. Топливо обычно имеет форму стержня с центральным отверстием. В процессе окисления стержень начинает сгорать от центра к периферии, а газы, полученные в результате сгорания, выходят через сопло, образуя тягу. Это самая простая конструкция среди всех ракетных двигателей.

В жидкостных РД топливо и окислитель находятся в жидком агрегатном состоянии в двух раздельных резервуарах. По каналам подачи они попадают в камеру сгорания, где смешиваются и происходит процесс горения. Продукты сгорания выходят через сопло, образуя тягу. В качестве окислителя обычно используется жидкий кислород, а топливо может быть разным: керосин, жидкий водород и т.д.

Недостатки РДТТ:

  • ограничение по времени работы: топливо сгорает очень быстро;
  • невозможность перезапуска двигателя, его остановки и регулирования тяги;
  • небольшой удельный вес в пределах 2000-3000 м/с.

Анализируя плюсы и минусы РДТТ, можно сделать вывод, что их использование оправдано только в тех случаях, когда нужен силовой агрегат средней мощности, достаточно дешевый и простой в исполнении. Сфера их использования – баллистические, метеорологические ракеты, ПЗРК, а также боковые ускорители космических ракет (ими оснащаются американские ракеты, в советских и российских ракетах их не использовали).

Достоинства жидкостных РД:

  • высокий показатель удельного импульса (порядка 4500 м/с и выше);
  • возможность регулирования тяги, остановки и перезапуска двигателя;
  • меньший вес и компактность, что дает возможность выводить на орбиту даже большие многотонные грузы.

Недостатки ЖРД:

  • сложная конструкция и пуско-наладочные работы;
  • в условиях невесомости жидкости в баках могут хаотично перемещаться. Для их осаждения нужно использовать дополнительные источники энергии.

Сфера применения ЖРД – это в основном космонавтика, так как для военных целей эти двигатели слишком дорогие.

Несмотря на то, что пока химические РД – единственные способные обеспечить вывод ракет в открытый космос, их дальнейшее усовершенствование практически невозможно. Ученые и конструкторы убеждены, что предел их возможностей уже достигнут, а для получения более мощных агрегатов с большим удельным импульсом необходимы другие источники энергии.

Конфигурации твердотопливных ракет

В описаниях твердотопливных ракет можно часто встретить следующее:

«Топливо для ракет состоит из перхлората аммония (окислитель, по весу – 69,6%), полимера (связующая смесь – 12,04%), алюминия (16%), оксида железа (катализатор – 0,4%) и эпоксидный отверждащий агент (1,96%). Перфорация сделана в форме 11-конечной звезды, находящейся в переднем сегменте двигателя и в форме дважды усеченного конуса в каждом из остальных сегментов, в т.ч. и конечном. Благодаря такой конфигурации при розжиге обеспечивается высокая тяга, а затем, через 50 с после старта, она уменьшается приблизительно на треть, предотвращая перенапряжение аппарата в период максимального динамического давления.

В этом плане объясняется не просто состав топлива, но и форма канала, который был пробуренный в центре топлива. Как выглядит перфорация в виде 11-конечной звезды, можете увидеть на фото:

Весь смысл в том, чтобы увеличить площадь поверхности канала, и соответственно, увеличить площадь выгорания, в результате чего увеличиться тяга. По мере сгорания топлива, форма меняется к кругу. Такая форма в случае с космическим шаттлом дает серьезную изначальную тягу, которая в средине полета становится немного послабее.

Твердотопливные двигатели имеют 3 важные преимущества:

  • низкая стоимость;
  • простота;
  • безопасность.

Хотя есть и 2 недостатка:

двигатель нельзя отключать или запускать повторно после зажигания;

невозможность контроля тяги.

Недостатки означают, что тип твердотопливных ракет подходит только для непродолжительных задач или систем ускорения. Если вам нужно управлять двигателем, то придется прибегнуть к системе жидкого топлива.

Рекордсмен космоса

Разработка двигателей РД-107 и РД-108 проходила в 1954–1957 годах под руководством выдающегося конструктора Валентина Глушко. Двигатели предназначались для первой в мире межконтинентальной баллистической ракеты Р-7, модификация которой в 1957 году доставила в космос первый искусственный спутник Земли. В 1961 году двигатели обеспечили первый полет человека в космос. На протяжении более 60 лет российские ракеты «Союз» поднимаются в небо с помощью двигателей РД-107/108 и их модификаций. Серийное производство двигателей налажено на самарском заводе «ОДК-Кузнецов», входящем в Объединенную двигателестроительную корпорацию Ростеха.

Программа РД-107/108 продолжает развиваться, создаются новые модификации – всего разработано 18 вариантов для различных программ. Сегодня модификациями двигательных установок РД-107А/РД-108А оснащаются I и II ступени всех ракет-носителей среднего класса типа «Союз». Все пилотируемые и до 80% грузовых космических кораблей в России взлетают благодаря этим двигателям.

РД-107/108 уже поставил свой космический рекорд по долголетию. Конечно, когда-нибудь и его время пройдет, но сегодня запас для совершенствования двигателя еще не исчерпан.

Хронология разработки

В 2017 году Роскосмос принял решение отказаться от испытаний корабля «Федерация» на ракете-носителе «Ангара-А5П» в пользу разрабатываемого носителя «Союз-5».

Вид работ Сроки
Разработка космического ракетного комплекса 2016-2021 год
Доработка наземного комплекса 2020-2021 год
Лётно-конструкторские испытания 2022-2024 год
Коммерческая эксплуатация с 2024 года

Прошедшие события

  • 18 августа 2015 года генеральный директор самарского Ракетно-космического центра «Прогресс» Александр Кирилин в интервью СМИ сообщил, что разработка проекта Русь-М закрыта, однако начата работа над созданием «Союза-5».
  • В 2016 году работы по РН по программе «Феникс» перешли в активную стадию.
  • апрель 2017 года — в Конструкторском бюро Химавтоматики, входящего в НПО «Энергомаш», на основе воронежского двигателя 14Д23 начались работы по созданию нового двигателя для второй ступени ракеты-носителя «Союз-5». Концепция нового двигателя перед Днём космонавтики была озвучена в интервью главным конструктором КБХА Гороховым В. Д.

Конец мая 2017 года — на совещании по развитию ракетно-космической отрасли было решено назвать новую ракету-носитель, разрабатываемую по программе «Феникс», «Союз-5».

20 июня 2017 года генеральный директор РКК «Энергия» Владимир Солнцев заявил, что летные испытания «Союз-5» могут начаться раньше 2022 года вместо первоначально запланированных в период 2023-2035гг.

11 августа 2017 года распоряжением Правительства РФ РКК «Энергия» назначена головным разработчиком «Союза-5». В составе соисполнителей работ — РКЦ «Прогресс» и ЦЭНКИ. Помимо самого носителя будет разработан разгонный блок типа ДМ, а также будет модернизирована наземная инфраструктура.

Этап эскизного проектирования (2017—2018 гг.)

16 августа 2017 года был опубликован госконтракт на составную часть опытно-конструкторской работы (СЧ ОКР) на тему «Разработка эскизного проекта на комплекс ракеты-носителя среднего класса для летно-конструкторской отработки ключевых элементов космического ракетного комплекса сверхтяжелого класса», в котором было указано, что техзадание должно быть проведено в период с 1 июня 2017 года по 31 марта 2018 года. В рамках эскизного проектирования РКК «Энергия» должна провести обоснование основных характеристик, технических и технологических решений по ракете-носителю среднего класса с учетом использования наземной космической инфраструктуры, оставшейся от ракеты «Зенит-М» на космодроме Байконур. Также в эскизном проекте на новую ракету должна быть дана оценка возможности использования в ее составе существующих и перспективных головных обтекателей, в том числе головного обтекателя 14С735 от ракеты-носителя «Ангара-А5» или зарубежного аналога. требование к применению зарубежного обтекателя может быть связано с перспективами применения ракеты «Союз-5» по программе «Морской старт». Головные обтекатели для ракет «Зенит» в рамках этого проекта производит американская компания Boeing. Использование импортных комплектующих изделий (включая материалы стран СНГ) при изготовлении частей ракеты возможно при согласовании с заказчиком (Роскосмос). При этом имеется требование о максимальном использовании продукции российского производства в конструкции составных частей ракеты-носителя.

16 августа 2017 года — публикация техзадания на разработку эскизного проекта, в котором было указано, что для «Союза-5» должен быть проработан вариант компоновки с одним двигателем РД-171М в составе блока первой ступени диаметром 4,1 м с рабочим запасом топлива 398 тонн и двух доработанных РД-0124 от третьей ступени носителя «Ангара-А5» в качестве второй ступени.

17 августа 2017 года генеральный директор РКК «Энергия» Владимир Солнцев сообщил СМИ, что эскизное проектирование «Союза-5» будет завершено к ноябрю 2017 года.

Ожидаемые события

2020—2021 гг. — завершение модернизации инфраструктуры космодрома Байконур под «Союз-5».

2022 год — запуск «Союза-5» с кораблем «Федерация» в автоматическом режиме с космодрома Байконур.

2024 год — запуск «Союза-5» с пилотируемым кораблем «Федерация» с космодрома Байконур.

после 2025 года — запуск «Союза-5» и сверхтяжелой ракеты с единого стола-стенда с космодрома Восточный.

Твердотопливные ракеты: конфигурации

Читая описание для современных твердотопливных ракет, часто можно найти вот такое:

Здесь объясняется не только состав топлива, но и форма канала, пробуренного в центре топлива. «Перфорация в виде 11-конечной звезды» может выглядеть вот так:

Твердотопливные двигатели обладают тремя важными преимуществами:

  • простота
  • низкая стоимость
  • безопасность

Но есть и два недостатка:

  • тягу невозможно контролировать
  • после зажигания двигатель нельзя отключить или запустить повторно

Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.

Перспективы

Хотя электроракетные двигатели имеют малую тягу по сравнению с жидкотопливными ракетами, они способны работать длительное время и осуществлять медленные полеты на большие расстояния. Самые совершенные на сегодняшний день электрические ракетные двигатели имеют ΔV до 100 км/с и при использовании ядерных источников энергии пригодны для полетов к внешним планетам Солнечной системы, но недостаточно мощные для межзвездного полета. Если же говорить о межзвездном полете, то электроракетный двигатель с ядерным реактором рассматривался для проекта Дедал, но был отвергнут из-за малой тяги, большого веса необходимого для преобразования ядерной энергии в электрическую, оборудования, и как следствие, небольшого ускорения, которому потребовались бы столетия для достижения нужной скорости. Однако электро-ракетный способ межзвездного полета теоретически возможен при внешнем источнике энергопитания через лазер на солнечные батареи космического аппарата.

В настоящее время многими странами исследуются вопросы создания пилотируемых межпланетных кораблей с
ЭРДУ. Существующие ЭРД не являются оптимальными для использования в качестве маршевых двигателей для таких кораблей, в связи с чем в ближайшем будущем следует ожидать возобновления интереса к разработке сильноточных ЭРД на жидкометаллическом РТ (висмут, литий, калий, цезий) с электрической мощностью до 1 МВт, способных длительно работать при токах силой до 5—10 кА. Эти РД должны развивать тягу до 20—30 Н и скорость истечения 20—30 км/с при КПД 30 % и более. В 1975 г. подобный РД испытан в СССР на ИСЗ «Космос-728» (РД электрической мощностью 3 кВт, работающий на калии, развил скорость истечения ~ 30 км/с).

Кроме России и США исследованиями и разработкой ЭРД занимаются также в Великобритании, ФРГ, Франции, Японии, Италии. Основные направления деятельности этих стран: ИД (наиболее успешны разработки Великобритании и Германии, особенно — совместные); СПД и ДАС (Япония, Франция); ЭТД (Франция). В основном эти двигатели предназначены для ИСЗ.

Устройство РД-107/108

Двигатель РД-107/108 состоит из четырех камер сгорания, турбонасосного агрегата, газогенератора, испарителя азота для наддува баков ракеты и комплекта агрегатов автоматики. Для управления полетом ракеты на двигателях имеются рулевые камеры: два на РД-107 и четыре на РД-108.

Несоизмеримые с возможностями существующих металлов температуры горения и продуктов сгорания, большое количество выделяемого тепла требуют охлаждения стенок камеры сгорания и сопла. В РД-107/108 эта инженерная задача решается двухстеночной конструкцией камеры сгорания и сопла и организацией охлаждения стенки со стороны горячего тракта подачей горючего (керосина) в камеру сгорания через межстеночные пространства.

Вторая особенность РД-107/108 − открытая схема сброса генераторного газа. Окислитель и горючее хранятся в отдельных баках и подаются в систему с помощью турбонасосного агрегата (ТНА). Для привода насосов горючего и окислителя используется турбина, в качестве рабочего тела для которой используется парогаз – продукт каталитического разложения пероксида водорода. Выхлопы турбины выбрасываются за срез сопла. 

Применение[править | править код]

Космонавтикаправить | править код

Редко используются в отечественной[где?] космонавтике (например, Старт (ракета-носитель)), однако широко применялись и применяются в ракетной технике других[где?] стран. В основном это элементы первой ступени (боковые ускорители):

  • Боковой ускоритель МТКК Спейс шаттл и Space Launch System.
  • Вторая ступень Наро-1 (Республика Корея), Антарес (США).
  • Семейство твердотопливных ступеней Castor (англ.)русск.
  • Японская ракета SS-520

Боевые ракетыправить | править код

Баллистические ракеты подводных лодок
  • UGM-27 «Поларис» (1960)
  • UGM-73 «Посейдон» (1970)
  • UGM-96 «Трайдент» (1979)
  • M1 (1972)
  • M20 (1976)
  • M45 (1996)
  • M51
  • Р-39 (1983)
  • Р-30 «Булава»
Межконтинентальные баллистические ракеты
  • LGM-30 «Минитмен» (1962)
  • MX «Пискипер» (1986)
  • РТ-23 УТТХ «Молодец»(1987)
  • РТ-2ПМ «Тополь» (1982)
  • РТ-2ПМ2 «Тополь-М» (1998)
  • РС-24 «Ярс» (2009)
  • РС-26 «Рубеж» (2017)
Противоракеты системы ПВО

LIM-49A «Спартен»

ПЗРК

Игла

В моделизмеправить | править код

В ракетомоделировании используется 2 типа двигателей на твёрдом топливе. Первые — на основе дымного пороха (в Америке такие двигатели имеются в свободной продаже). Но обычно используют расплав или смесь калийной селитры (или реже натриевой селитры) и углеводов (сахар, сорбит и декстроза) — это т. н. «карамель», она изготовляется самостоятельно. Ракетные двигатели обычно имеют сопло, но иногда делают и бессопловые двигатели. Их обычно изготовляют из картонных гильз для охотничьих ружей, в качестве сопла используется отверстие для капсюля.

Классификация ЭРД

Классификация ЭРД не устоялась, однако в русскоязычной литературе обычно принято классифицировать ЭРД по преобладающему механизму ускорения частиц. Различают следующие типы двигателей:

  • электротермические ракетные двигатели (ЭТД);
  • электростатические двигатели (ИД, СПД);
  • сильноточные (электромагнитные, магнитодинамические) двигатели;
  • импульсные двигатели.


Принятая в русскоязычной литературе классификация электроракетных двигателей

ЭТД, в свою очередь, делятся на электронагревные (ЭНД) и электродуговые (ЭДД) двигатели.

Электростатические делятся на ионные (в том числе коллоидные) двигатели (ИД, КД) — ускорители частиц в униполярном пучке, и ускорители частиц в квазинейтральной плазме. К последним относятся ускорители с замкнутым дрейфом электронов и протяжённой (УЗДП) или укороченной (УЗДУ) зоной ускорения. Первые принято называть стационарными плазменными двигателями (СПД), также встречается (всё реже) наименование — линейный холловский двигатель (ЛХД), в западной литературе именуется холловским двигателем. УЗДУ обычно называются двигателями с ускорением в анодном слое (ДАС).

К сильноточным (магнитоплазменным, магнитодинамическим) относят двигатели с собственным магнитным полем и двигатели с внешним магнитным полем (например, торцевой холловский двигатель — ТХД).

Импульсные двигатели используют кинетическую энергию газов, появляющихся при испарении твёрдого тела в электрическом разряде.

В качестве рабочего тела в ЭРД могут применяться любые жидкости и газы, а также их смеси. Тем не менее, для каждого типа двигателей существуют рабочие тела, применение которых позволяет достигнуть наилучших результатов. Для ЭТД традиционно используется аммиак, для электростатических — ксенон, для сильноточных — литий, для импульсных — фторопласт.

Недостатком ксенона является его стоимость, обусловленная небольшим годовым производством (менее 10 тонн в год во всём мире), что вынуждает исследователей искать другие РТ, похожие по характеристикам, но менее дорогие. В качестве основного кандидата на замену рассматривается аргон. Он также является инертным газом, но, в отличие от ксенона имеет большую энергию ионизации при меньшей атомной массе. Энергия, затраченная на ионизацию на единицу ускоренной массы, является одним из источников потерь КПД.

Электрический ракетный двигатель

Этот тип имеет самый большой потенциал развития и использования в будущем. Электрические ракетные двигатели подают большие надежды. Так, их удельный импульс может достигать значений 210 км/с. Различают 3 типа двигателей:

  1. Электротермические.
  2. Электростатические (ионный ракетный двигатель, например).
  3. Электромагнитные.

Особенностью (про которую можно сказать, что она является и преимуществом, и недостатком) является то, что при увеличении удельного импульса необходимо меньше горючего, но больше энергии. С этой точки зрения неплохие шансы имеет ионный ракетный двигатель, который работает на газе. На данный момент он применяется на практике для корректировки траектории орбитальных станций и спутников. Ограниченность источников электроэнергии в космическом пространстве, а также проблемы с работоспособностью на высоте свыше 100 километров пока мешают их широкой эксплуатации. Большой потенциал использования имеют плазменные ракетные двигатели, в которых рабочее тело имеет состояние плазмы, но находящиеся пока только в стадии эксперимента.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector